网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 矩映射配边和Hamilton群作用(英文版)(精)/美国数学会经典影印系列
分类 科学技术-自然科学-数学
作者 (美)维克多·吉耶曼//维克多·金兹伯格//(加)耶尔·卡尔松
出版社 高等教育出版社
下载
简介
目录
Chapter 1.Introduction
1.Topological aspects of Hamiltonian group actions
2.Hamiltonian cobordism
3.The linearization theorem and non-compact cobordisms
4.Abstract moment maps and non-degeneracy
5.The quantum linearization theorem and its applications
6.Acknowledgements
Part 1.Cobordism
Chapter 2.Hamiltonian cobordism
1.Hamiltonian group actions
2.Hamiltonian geometry
3.Compact Hamiltonian cobordisms
4.Proper Hamiltonian cobordisms
5.Hamiltonian complex cobordisms
Chapter 3.Abstract moment maps
1.Abstract moment maps: definitions and examples
2.Proper abstract moment maps
3.Cobordism
4.First examples of proper cobordisms
5.Cobordisms of surfaces
6.Cobordisms of linear actions
Chapter 4.The linearization theorem
1.The simplest case of the linearization theorem
2.The Hamiltonian linearization theorem
3.The linearization theorem for abstract moment maps
4.Linear torus actions
5.The right-hand side of the linearization theorems
6.The Duistermaat-Heckman and Guillemin-Lerman-Sternberg formulas
Chapter 5.Reduction and applications
1.(Pre-)symplectic reduction
2.Reduction for abstract moment maps
3.The Duistermaat-Heckman theorem
4.Kaihler reduction
5.The complex Delzant construction
6.Cobordism of reduced spaces
7.Jeffrey-Kirwan localization
8.Cutting
Part 2.Quantization
Chapter 6.Geometric quantization
1.Quantization and group actions
2.Pre-quantization
3.Pre-quantization of reduced spaces
4.Kirillov-Kostant pre-quantization
5.Polarizations, complex structures, and geometric quantization
6.Dolbeault Quantization and the Riemann-Roch formula
7.Stable complex quantization and Spinc quantization
8.Geometric quantization as a push-forward
Chapter 7.The quantum version of the linearization theorem
1.The quantization of Cd
2.Partition functions
3.The character of Q(Ca)
4.A quantum version of the linearization theorem
Chapter 8.Quantization commutes with reduction
1.Quantization and reduction commute
2.Quantizatioa of stable complex toric varieties
3.Linearization of [Q,R]=0
4.Straightening the symplectic and complex structures
5.Passing to holomorphic sheaf cohomology
6.Computing global sections; the lit set
7.The Cech complex
8.The higher cohomology
9.Singular [Q,R]=0 for non-symplectic Hamiltonian G-manifolds
10.Overview of the literature
Part 3.Appendices
Appendix A.Signs and normalization conventions
1.The representation of G on C∞(M)
2.The integral weight lattice
3.Connection and curvature for principal torus bundles
4.Curvature and Chern classes
5.Equivariant curvature; integral equivariant cohomology
Appendix B.Proper actions of Lie groups
1.Basic definitions
2.The slice theorem
3.Corollaries of the slice theorem
4.The Mostow-Palais embedding theorem
5.Rigidity of compact group actions
Appendix C.Equivariant cohomology
1.The definition and basic properties of equivariant cohomology
2.Reduction and cohomology
3.Additivity and localization
4.Formality
5.The relation between H* G and H* T
6.Equivariant vector bundles and characteristic classes
7.The Atiyah-Bott-Berline-Vergne localization formula
8.Applications of the Atiyah-Bott-Berline-Vergne localization formula
9.Equivariant homology
Appendix D.Stable complex and Spine-structures
1.Stable complex structures
2.Spine-structures
3.Spine-structures and stable complex structures
Appendix E.Assignments and abstract moment maps
1.Existence of abstract moment maps
2.Exact moment maps
3.Hamiltonian moment maps
4.Abstract moment maps on linear spaces are exact
5.Formal cobordism of Hamiltonian spaces
Appendix F.Assignment cohomology
1.Construction of assignment cohomology
2.Assignments with other coefficients
3.Assignment cohomology for pairs
4.Examples of calculations of assignment cohomology
5.Generalizations of assig
内容推荐
Guillemin,Ginzburg和Karshon的研究表明,从隐含的拓扑脉络来看,G流形不变量的计算是涉及同变配边的线性化定理的结果。本书呈现了这一当前极受关注的快速发展领域中的许多新的成果,采用了新颖的方法,并展示了令人激动的新研究。
在过去的几十年中,“局部化”一直是同变微分几何学领域的重要主题之一。典型的结果是Duistermaat-Heckman理论、同变de Rham理论中的Berline-Vergne-Atiyah-Bott局部化定理以及“量化与约化交换”定理及其各种推论。为了阐述这些定理都是涉及同变配边的单个结论的结果这一想法,作者开发了允许对象是非紧致流形的配边理论。这种非紧致配边的关键要素是同变几何对象,他们称其为“抽象矩映射”。这是在Hamilton动力学理论中出现的矩映射的自然而重要的推广。本书还包含了多个附录,内容包括流形上正常群作用、同变上同调、Spinc结构和稳定复结构的介绍。
本书适合于对微分几何感兴趣的研究生和相关研究人员阅读,也可供拓扑学家、Lie理论学家、组合学家和理论物理学家参考。阅读本书需要流形上的微积分和基础研究生水平的微分几何方面的一些专业知识。
随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/2/22 18:06:42