![]()
内容推荐 本书是俄国著名数学家A.H.施利亚耶夫的力作。施利亚耶夫是现代概率论奠基人、前苏联科学院院士、著名数学家A.H.柯尔莫戈洛夫的学生,在概率统计界和金融数学界影响极大。 本书作为莫斯科大学最为出色的概率教材之一,分为一、二两卷,并配有习题集。第一卷《概率》是初等概率论的内容,大部分内容涉及以柯尔莫戈洛夫公理化体系为基础的初等概率论、概率论的数学基础、概率测度的收敛性和极限定理的基本问题,可以作为初步了解概率论学科的教材。第二卷《概率》讲述离散时间随机过程,包括平稳随机序列和遍历理论、构成鞅的随机变量序列、形成马尔可夫链的随机变量序列等内容。书中在相应的章节配有数理统计的内容,讲述数理统计的概率论基础,且证明了相应的命题。本书为第一卷。 本书适合概率统计、数学、应用数学等专业作为教学用书,也可供其他相关专业学生及研究应用人员参考。 作者简介 A.H.施利亚耶夫,俄罗斯科学院通讯院士,莫斯科大学功勋教授(2004),莫斯科大学数学一力学系概率论教研室主任(1996),俄罗斯科学院数学研究所随机过程统计实验室主任(1 986)。 施利亚耶夫是现代概率论奠基人、前苏联科学院院士、著名数学家A.H.柯尔莫戈洛夫的学生。施利亚耶夫的科学活动,涉及概率论和数理统计及其各种不同领域,出版了18部书,其中7部专著,将近150篇学术论文。 施利亚耶夫的社会科技、国际学术活动非常活跃,多次在重要的国际学术会议上作过学术报告,参与过许多学术研讨会的组织工作。曾兼职:国际伯努利学会主席(1989—1991),国际金融数学学会主席(1998—1999),俄罗斯保险统计员协会主席(1994-一1998)。大不列颠皇家统计学会荣誉成员(自1985起)。1990年被选为欧洲科学院院士。 目录 第三版前言 第二版前言 第一版前言 序言 第一章 初等概率论 §1.有限种结局试验的概率模型 §2.某些经典模型和分布 §3.条件概率.独立性 §4.随机变量及其特征 §5.伯努利概型Ⅰ.大数定律 §6.伯努利概型Ⅱ.极限定理(棣莫弗一拉普拉斯局部定理、泊松定理) §7.伯努利概型中“成功”概率的估计 §8.关于分割的条件概率与条件数学期望 §9.随机游动Ⅰ.掷硬币博弈的破产概率和平均持续时间 §10.随机游动Ⅱ.反射原理.反正弦定律 §11.鞅.鞅对随机游动的某些应用 §12.马尔可夫链.遍历性定理.强马尔可夫性 第二章 概率论的数学基础 §1.有无限种结局试验的概率模型、柯尔莫戈洛夫公理化体系 §2.代数和σ-代数.可测空间 §3.在可测空间上建立概率测度的方法 §4.随机变量Ⅰ §5.随机元 §6.勒贝格积分.数学期望 §7.关于σ-代数的条件概率和条件数学期望 §8.随机变量Ⅱ §9.建立具有给定有限维分布的过程 §10.随机变量序列收敛的各种形式 §11.具有有限二阶矩的随机变量的希尔伯特空间 §12.特征函数 §13.高斯系 第三章 概率测度的接近程度和收敛性.中心极限定理 §1.概率测度和分布的弱收敛 §2.概率分布族的相对紧性和稠密性 §3.极限定理证明的特征函数法 §4.独立随机变量之和的中心极限定理I.林德伯格条件 §5.独立随机变量之和的中心极限定理Ⅱ.非经典条件 §6.无限可分分布和稳定分布 §7.弱收敛的“可度量性” §8.关于测度的弱收敛与随机元的几乎处处收敛的联系(“一个概率空间的方法”) §9.概率测度之间的变差距离.角谷一海林格距离和海林格积分.对测度的绝对连续性和奇异性的应用 §10.概率测度的临近性和完全渐近可区分性 §11.中心极限定理的收敛速度 §12.泊松定理的收敛速度 §13.数理统计的基本定理 图书文献资料 参考文献 名词索引 人名表 常用数学符号 |