| 内容推荐 本书仅有100多页的篇幅,介绍了一些实分析工具的基础知识,包括:Hardy-Littlewood极大算子、Calderón-Zygmund理论、Littlewood-Paley理论、空间和算子的插值以及H1和BMO空间的基础知识。本书精炼简洁,提供了简要证明和各种难度的练习,旨在挑战和吸引读者。本书是调和分析的导引课程,适用于研究生一年级的Fourier分析和偏微分方程专业。尽管附录中包含了一些背景材料,但读者仍应具备泛函分析的基本知识,了解测度论和积分理论,熟悉Euclid空间中的Fourier变换。
 目录 Preface1  The Hardy-Littlewood maximal operator
 1.1  The Hardy-Littlewood operator
 1.2  The Lebesgue derivation theorem
 1.3  Regular families
 1.4  Control of some convolutions
 1.5  Exercises
 2  Principal values, and some Fourier transforms
 2.1  Operators commuting with translations
 2.2  Principal values
 2.3  Some Fourier transforms
 2.4  Homogeneous kernels
 2.5  Exercises
 3  The Calderon-Zygmund theory
 3.1  The dyadic cubes
 3.2  The Calder6n-Zygmund decomposition
 3.3  Singular integrals
 3.4  Exercises
 4  The Littlewood-Paley theory
 4.1  Vector-valued singular integrals
 4.2  The Littlewood-Paley inequalities
 4.3  The Marcinkiewicz multiplier theorem
 4.4  Exercises
 5  Higher Riesz transforms
 5.1  Spherical harmonics
 5.2  Higher Riesz transforms
 5.3  Nonsmooth kemels
 5.4  Exercises
 6  BMO and H1
 6.1  The BMO space
 6.2  The Ht(Rn) space
 6.3  Duality of H1-BMO
 6.4  Exercises
 7  Singular integrals on other groups
 7.1  The torus
 7.2  Z
 7.3  Some totally disconnected groups
 7.4  Exercises
 8  Interpolation
 8.1  Real methods
 8.2  Complex methods
 8.3  Exercises
 A  Background material
 A.1  Vector-valued integrals
 A.2  Convolution
 A.3  Polar coordinates
 A.4  Distribution functions and weak Lp spaces
 A.5  Laplace transform
 A.6  Khintchine inequalities
 A.7  Exercises
 B  Notation and conventions
 B. 1  Glossary of notation and symbols
 B.2  Conventions
 Postface
 Bibliography
 Index
 |