![]()
内容推荐 本书仅有100多页的篇幅,介绍了一些实分析工具的基础知识,包括:Hardy-Littlewood极大算子、Calderón-Zygmund理论、Littlewood-Paley理论、空间和算子的插值以及H1和BMO空间的基础知识。本书精炼简洁,提供了简要证明和各种难度的练习,旨在挑战和吸引读者。 本书是调和分析的导引课程,适用于研究生一年级的Fourier分析和偏微分方程专业。尽管附录中包含了一些背景材料,但读者仍应具备泛函分析的基本知识,了解测度论和积分理论,熟悉Euclid空间中的Fourier变换。 目录 Preface 1 The Hardy-Littlewood maximal operator 1.1 The Hardy-Littlewood operator 1.2 The Lebesgue derivation theorem 1.3 Regular families 1.4 Control of some convolutions 1.5 Exercises 2 Principal values, and some Fourier transforms 2.1 Operators commuting with translations 2.2 Principal values 2.3 Some Fourier transforms 2.4 Homogeneous kernels 2.5 Exercises 3 The Calderon-Zygmund theory 3.1 The dyadic cubes 3.2 The Calder6n-Zygmund decomposition 3.3 Singular integrals 3.4 Exercises 4 The Littlewood-Paley theory 4.1 Vector-valued singular integrals 4.2 The Littlewood-Paley inequalities 4.3 The Marcinkiewicz multiplier theorem 4.4 Exercises 5 Higher Riesz transforms 5.1 Spherical harmonics 5.2 Higher Riesz transforms 5.3 Nonsmooth kemels 5.4 Exercises 6 BMO and H1 6.1 The BMO space 6.2 The Ht(Rn) space 6.3 Duality of H1-BMO 6.4 Exercises 7 Singular integrals on other groups 7.1 The torus 7.2 Z 7.3 Some totally disconnected groups 7.4 Exercises 8 Interpolation 8.1 Real methods 8.2 Complex methods 8.3 Exercises A Background material A.1 Vector-valued integrals A.2 Convolution A.3 Polar coordinates A.4 Distribution functions and weak Lp spaces A.5 Laplace transform A.6 Khintchine inequalities A.7 Exercises B Notation and conventions B. 1 Glossary of notation and symbols B.2 Conventions Postface Bibliography Index |