第一部分 在线广告市场与背景
第1章 在线广告综述
1.1 免费模式与互联网核心资产
1.2 大数据与广告的关系
1.3 广告的定义与目的
1.4 在线广告表现形式
1.5 在线广告简史
第2章 计算广告基础
2.1 广告有效性原理
2.2 互联网广告的技术特点
2.3 计算广告的核心问题
2.3.1 广告收入的分解
2.3.2 结算方式与eCPM估计的关系
2.4 在线广告相关行业协会
2.4.1 交互广告局
2.4.2 美国广告代理协会
2.4.3 美国国家广告商协会
第二部分 在线广告产品逻辑
第3章 在线广告产品概览
3.1 商业产品的设计原则
3.2 广告系统的产品接口
3.2.1 广告主层级组织与投放管理
3.2.2 供给方管理接口
3.2.3 供需之间多种接口形式
第4章 合约广告
4.1 广告位合约
4.2 受众定向
4.2.1 受众定向方法概览
4.2.2 受众定向标签体系
4.2.3 标签体系的设计思路
4.3 展示量合约
4.3.1 流量预测
4.3.2 流量塑形
4.3.3 在线分配
4.3.4 产品案例
第5章 搜索广告与竞价广告
5.1 搜索广告
5.1.1 搜索广告产品形态
5.1.2 搜索广告产品新形式
5.1.3 搜索广告产品策略
5.1.4 产品案例
5.2 位置拍卖与机制设计
5.2.1 市场保留价
5.2.2 定价问题
5.2.3 价格挤压
5.2.4 Myerson最优拍卖
5.2.5 定价结果示例
5.3 竞价广告网络
5.3.1 广告网络产品形态
5.3.2 广告网络产品策略
5.3.3 产品案例
5.4 竞价广告需求方产品
5.4.1 搜索引擎营销
5.4.2 交易终端
5.4.3 产品案例
5.5 竞价广告与合约广告的比较
第6章 程序化交易广告
6.1 实时竞价
6.2 其他程序化交易方式
6.2.1 优选
6.2.2 私有市场
6.2.3 程序化直投
6.2.4 广告交易方式谱系
6.3 广告交易平台
6.4 需求方平台
6.4.1 需求方平台产品策略
6.4.2 出价策略
6.4.3 出价和定价过程
6.4.4 重定向
6.4.5 新客推荐
6.4.6 产品案例
6.5 供给方平台
6.5.1 供给方平台产品策略
6.5.2 HeaderBidding
6.5.3 产品案例
第7章 数据加工与交易
7.1 有价值的数据来源
7.2 数据管理平台
7.2.1 三方数据划分
7.2.2 第一方数据管理平台
7.2.3 第三方数据管理平台
7.2.4 产品案例
7.3 数据交易的基本过程
7.4 隐私保护和数据安全
7.4.1 隐私保护问题
7.4.2 程序化交易中的数据安全
7.4.3 欧盟的通用数据保护条例
第8章 信息流与原生广告
8.1 移动广告的现状与挑战
8.1.1 移动广告的特点
8.1.2 移动广告的传统创意形式
8.1.3 移动广告的挑战
8.2 信息流广告
8.2.1 信息流广告的定义
8.2.2 信息流广告产品关键
8.3 其他原生广告相关产品
8.3.1 搜索广告
8.3.2 软文广告
8.3.3 联盟
8.4 原生广告平台
8.4.1 表现原生与场景原生
8.4.2 场景的感知与应用
8.4.3 植入式原生广告
8.4.4 产品案例
8.5 原生广告与程序化交易
第三部分 计算广告关键技术
第9章 计算广告技术概览
9.1 个性化系统框架
9.2 各类广告系统优化目标
9.3 计算广告系统架构
9.3.1 广告投放引擎
9.3.2 数据高速公路
9.3.3 离线数据处理
9.3.4 在线数据处理
9.4 计算广告系统主要技术
9.5 用开源工具搭建计算广告系统
9.5.1 Web服务器Nginx
9.5.2 分布式配置和集群管理工具ZooKeeper
9.5.3 全文检索引擎Lucene
9.5.4 跨语言通信接口Thrift
9.5.5 数据高速公路Flume
9.5.6 分布式数据处理平台Hadoop
9.5.7 特征在线缓存Redis
9.5.8 流计算平台Storm
9.5.9 高效的迭代计算框架Spark
第10章 基础知识准备
10.1 信息检索
10.1.1 倒排索引
10.1.2 向量空间模型
10.2 最优化方法
10.2.1 拉格朗日法与凸优化
10.2.2 下降单纯形法
10.2.3 梯度下降法
10.2.4 拟牛顿法
10.3 统计机器学习
10.3.1 最大熵与指数族分布
10.3.2 混合模型和EM算法
10.3.3 贝叶斯学习
10.4 统计模型分布式优化框架
10.5 深度学习
10.5.1 深度神经网络优化方法
10.5.2 卷积神经网络(CNN)
10.5.3 递归神经网络(RNN