网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 深度学习与医学大数据(精)
分类 科学技术-医学-基础医学
作者 乔霓丹
出版社 上海科学技术出版社
下载
简介
内容推荐
随着数据量的几何级数增长,近5年,以数据为导向的预测和因果推断在学术界有着巨大的进展。本书将着重讨论这两方面的进展,以及如何应用这些成果进行医学科学研究。
本书前半部分以重症监护治疗室患者的数据为例介绍如何进行医学数据的预处理,如何使用机器学习模型预测患者的死亡率。本书前半部分的重点在于深度学习,内容包括神经网络的基础知识、利用卷积神经网络分类诱发电位图像、利用递归神经网络预测疾病的复发以及利用自编码算法去除图像噪音以生成新的模拟图像。本书还涉及基础医学中深度学习的应用以及如何解释机器学习模型。然而,医学实践中往往不只需要预测某个患者的某项结局,更需要知道哪些治疗能够改善结局。本书在神经网络模型之后将以脓毒症患者的治疗为例介绍强化学习的概念,从而为进入因果推断搭建桥梁。
本书最后2个专题着重讨论如何通过因果关系图直观地判断因果关系中的混杂因素、如何使用回归控制混杂因素、如何利用倾向得分控制混杂因素以及如何利用逆概率加权控制混杂因素。结合强化学习的概念,最后将讨论如何评估随时间变化的治疗,以及如何建立治疗策略。
本书可作为各级医学研究者、医学院学生和教师的参考用书。
作者简介
乔霓丹,男,医学博士,复旦大学华山医院神经外科主治医师。2012年博士毕业于复旦大学。2009-2010年在日本京都大学北野医院实习,方向为心血管与神经外科。2017—2019年在职攻读美国哈佛医学院临床研究科学硕士,为美国麻省总医院神经内分泌科研究员,上海医师协会会员。至今发表SCI30余篇。负责上海市科委扬帆计划1项,上海市科委基础研究项目1项。参与译著有《尤曼斯神经外科学》,参与编写《垂体瘤疑难病例汇编》。
目录
1 机器学习基础
1.1 数据概况
1.2 数据的预处理和特征选取
1.3 缺失值的处理与插补
1.4 交叉验证
1.5 模型建立
1.6 模型比较
2 梯度提升决策树
2.1 超参数
2.2 特征重要性
2.3 模型的临床应用
2.4 模型集成
2.5 机器学习的报告要点
3 聚类算法
3.1 各种聚类算法
3.2 主成分分析
3.3 聚类算法的直观显示
4 神经网络
4.1 感知器
4.2 全连接神经网络的训练
4.3 控制过拟合
4.4 公开数据来源
5 卷积神经网络
5.1 卷积运算
5.2 池化运算
5.3 简单卷积神经网络的构建和训练
5.4 图像样本量扩大
5.5 迁移学习
5.6 可解释的卷积神经网络
5.7 开放图像数据库
5.8 卷积神经网络的意义与不足
6 自编码和对抗生成神经网络
6.1 自编码算法基础
6.2 自编码算法降噪
6.3 变分自编码算法
6.4 变分自编码算法生成虚拟图像
6.5 对抗生成神经网络生成虚拟图像
7 递归神经网络
7.1 递归神经网络原理
7.2 递归神经网络构建
7.3 长短期记忆网络
7.4 门控递归神经网络
7.5 LSTM和GRU的构建
7.6 卷积神经网络和递归神经网络的叠加
8 自然语言处理和电子病历
8.1 从单词到向量
8.2 利用传统自然语言处理寻找脑外伤患者
8.3 利用神经网络寻找脑外伤患者
8.4 电子病历系统中神经网络的应用
9 可解释的机器学习
9.1 预测蛋白-蛋白间结合
9.2 预测基因-蛋白间结合
9.3 机器学习的解释
10 深度强化学习
10.1 强化学习
10.2 利用Q学习预测脓毒症的治疗策略
10.3 利用深度强化学习预测治疗策略
10.4 强化学习的不足之处
11 因果推断简介
11.1 反事实模型
11.2 随机对照研究
11.3 非随机对照研究
11.4 因果推断还是预测
11.5 因果关系图
11.6 分层分析
11.7 回归
11.8 交互作用
12 控制混杂因素的新方法
12.1 匹配分析
12.2 倾向得分
12.3 逆概率和稳定的逆概率加权
12.4 失访偏差的校正
12.5 随机对照研究中的偏差校正
12.6 工具变量
12.7 断点回归
12.8 随时间变动的治疗和混杂
12.9 动态治疗方案
附录:软件安装
随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/3/15 10:35:34