网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 纯数学教程(纪念版)(英文版) |
分类 | 科学技术-自然科学-数学 |
作者 | (英)G.H.哈代 |
出版社 | 世界图书出版公司 |
下载 | ![]() |
简介 | 内容推荐 《纯数学教程(纪念版)》是“剑桥数学图书馆”系列丛书之一。这部部世纪经典著作,以简洁易懂的数学语言,全面系统地介绍了基础数学的各个方面,并对许多经典的数学论证给出了严谨的证明。本书共分10章,在介绍了实数、复数的概念后,从第4章和第5章引入了极限的概念,较之一般书的处理方法更为轻松自然、易于接受。另外,书中每章后面配有大量有代表性的杂例,供读者参考练习以巩固所学知识。本书适合高校数学系及对相关专业学生和教师学习和参考。 目录 CHAPTER Ⅰ REAL VARIABLES 1-2.Rational numbers 3-7.Irrational numbers 8.Real numbers 9.Relations of magnitude between real numbers 10-11.Algebraical operations with real numbers 12.The number√2 13-14.Quadratic surds 15.The continuum 16.The continuous real variable 17.Sections of the real numbers. Dedekind's theorem 18.Points of accumulation 19.Weierstrass's theorem Miscellaneous examples CHAPTER Ⅱ FUNCTIONS OF REAL VARIABLES 20.The idea of a function 21.The graphical representation of functions. Coordinates 22.Polar coordinates 23.Polynomia s 24-25.Rational functions 26-27.Algebraical functions 28-29.Transcendental functions 30.Graphical solution of equations 31.Functions of two variables and their graphical representation 32.Curves in a plane 33.Loci in space Miscellaneous examples CHAPTER Ⅲ COMPLEX NUMBER 34-38.Displacements 39-42.Complex numbers 43.The quadratic equation with real coefficients 44.Argand's diagram 45.De Moivre's theorem 46.Rational functions of a complex variable 47-49.Roots of complex numbers Miscellaneous examples CHAPTER Ⅳ LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE 50.Functions of a positive integral variable 51.Interpolation 52.Finite and infinite classes 53-57.Properties possessed by a function of n for large values of n 58-61.Definition of a limit and other definitions 62.Oscillating functions 63-68.General theorems concerning limits 69-70.Steadily increasing or decreasing functions 71.Alternative proof of Weierstrass's theorem 72.The limit of xn 73.The limit of (1+1/n) n 74.Some algebraical lemmas 75.The limit of n □ 76-77.Infinite series 78.The infinite geometrical series 79.The representation of functions of a continuous real variable by means of limits 80.The bounds of a bounded aggregate 81.The bounds of a bounded function 82.The limits of indetermination of a bounded function 83-84.The general principle of convergence 85-86.Limits of complex functions and series of complex terms 87-88.Applications to zn and the geometrical series 89.The symbols 0, o, ~ Miscellaneous examples CHAPTER Ⅴ LIMITSOFFUNCTIONSOFACONTINUOUSVARIABLE.CONTINUOUS AND DISCONTINUOUS FUNCTIONS 90-92.Limits as x→ ∞ or x → ∞ 93-97.Limits as x → a 98.The symbols O, o, ~: orders of smallness and greatness 99-100.Continuous functions of a real variable 101-105.Properties of continuous functions. Bounded functions The oscillation of a function in an interval 106-107.Sets of intervals on a line. The Heine-Borel theorem 108.Continuous functions of several variables 109-110.Implicit and inverse functions Miscellaneous examples CHAPTER Ⅵ DERIVATIVES AND INTEGRALS 111-113.Derivatives 114.General rules for diferentiation 115.Derivatives of complex functions 116.The notation of the differential calculus 117.Differentiation of polynomials 118.Differentiation of rational functions 119.Differentiation of algebraical functions 120.Differentiation of transcendental functions 121.Repeated differentiation 122.General theorems concerning derivatives Rolle's theorem 123-125.Maxima and minima 126-127.The mean value theorem 128.Cauchy's mean value theorem 129.A theorem of Darboux 130-131.Integration. The logarithmic function 132.Integration of polynomials 133-134.Integration of rational functions 135-142.Integration of algebraical functions. Integration by rationalisation. Integration by parts 143-147. Integration of transcendental functions 148.Areas of plane curves 149.Lengths of plane curves Miscellaneous examples CHAPTER Ⅶ ADDTTTONAL THEOREMS IN THE DIFFERENTIAL AND INTEGRAL CALCULUS 150-151.Taylor's theorem 152.Taylor's series 153.Applications of Taylor's theorem to maxima and minima 154.The calculation of certain limits 155.The contact |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。