内容推荐 微分拓扑学有三个主要的研究领域:纤维丛、复流形和微分流形。本书对应用于微分流形和微分映射研究的拓扑学,对其基本思想作了全面的介绍,书中体现了作者的独特简明风格和独立的观点。取材得当,结构清晰,例题精彩,习题丰富,并尽量不使用代数拓扑的方法而是把几何分析内容提炼成一些数值不变量入手。 目录 Introduction Chapter 1 Manifolds and Maps 0.Submanifolds of Rn+k 1.Differential Structures 2.Differentiable Maps and the Tangent Bundle 3.Embeddings and Immersions 4.Manifolds with Boundary 5.A Convention Chapter 2 Function Spaces 1.The Weak and Strong Topologies on C'(M,N) 2.Approximations 3.Approximations on 0-Manifolds and Manifold Pairs 4.Jets and the Baire Property 5.Analytic Approximations Chapter 3 Transversality 1.The Morse-Sard Theorem 2.Transversality Chapter 4 Vector Bundles and Tubular Neighborhoods 1.Vector Bundles 2.Constructions with Vector Bundles 3.The Classification of Vector Bundles 4.Oriented Vector Bundles 5.Tubular Neighborhoods 6.Collars and Tubular Neighborhoods of Neat Submanifolds 7.Analytic Differential Structures Chapter 5 Degrees, Intersection Numbers,and the Euler Characteristic 1.Degrees of Maps 2.Intersection Numbers and the Euler Characteristic 3.Historical Remarks Chapter 6 Morse Theory 1.Morse Functions 2.Differential Equations and Regular Level Surfaces 3.Passing Critical Levels and Attaching Cells 4.C W-Complexes Chapter 7 Cobordism 1.Cobordism and Transversality 2.The Thorn Homomorphism Chapter 8 Isotopy 1.Extending Isotopies 2.Gluing Manifolds Together 3.Isotopies of Disks Chapter 9 Surfaces 1.Models of Surfaces 2.Characterization of the Disk 3.The Classification of Compact Surfaces Bibliooraphy Appendix Index
|