Structural Health Monitoring for Suspension Bridges(Interpretation of Field Measurements)(精)豆瓣PDF电子书bt网盘迅雷下载电子书下载-霍普软件下载网

网站首页   软件下载   游戏下载   翻译软件   电子书下载   电影下载   电视剧下载   教程攻略   音乐专区

请输入您要查询的图书:

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

电子书 Structural Health Monitoring for Suspension Bridges(Interpretation of Field Measurements)(精)
分类 电子书下载
作者 Yang Deng//Aiqun Li
出版社 科学出版社
下载 暂无下载
介绍
内容推荐
This book presents extensive information on structural health monitoring for suspension bridges. During the past two decades, there have been significant advances in the sensing technologies employed in long-span bridge health monitoring. However, interpretation of the massive monitoring data is still lagging behind. This book establishes a series of measurement interpretation frameworks that focus on bridge site environmental conditions, and global and local responses of suspension bridges. Using the proposed frameworks, it subsequently offers new insights into the structural behaviors of long-span suspension bridges. As a valuable resource for researchers, scientists and engineers in the field of bridge structural health monitoring, it provides essential information, methods, and practical algorithms that can facilitate in-service bridge performance assessments.
目录
Part 1
1 Temperature Action Monitoring of Main Girder
1.1 Introduction
1.2 The NSB Description and Instrumentation
1.3 Spatial and Temporal Characteristics of Temperature Measurements
1.4 Effective Temperature Analysis
1.4.1 Correlation of Ambient Air Temperature and Effective Temperature
1.4.2 Cycling Variation of Effective Temperature
1.5 Temperature Gradient Analysis
1.5.1 Transverse Temperature Differences
1.5.2 Vertical Temperature Differences
1.5.3 Correlation Analysis of Temperature Differences
1.6 Characteristic Values of Effective Temperature
and Temperature Gradients
1.7 Discussion of Temperature Actions for Potential Bridge Design Improvements
1.7.1 Effective Temperature
1.7.2 Temperature Gradients
1.8 Summary
References
2 Bridge-Site Extreme Wind Prediction
2.1 Introduction
2.2 The RSB Description and Wind Monitoring Instrumentation
2.3 Statistical Analysis of Wind Measurements
2.4 Maximum Entropy-Based Prediction Method
2.4.1 Basic Theory
2.4.2 Numerical Example
2.5 Prediction of Extreme Wind Velocity
2.5.1 Joint Probability Density Functions
2.5.2 Estimation of Model Parameters
2.5.3 Extreme Wind Velocities
2.6 Summary
Appendix
References
Part 2
3 Measurement-Based Damage Detection for Expansion Joints
3.1 Introduction
3.2 Displacement Monitoring of the RSB
3.3 Determination of Dominant Environmental Factors
3.4 Damage Detection of Expansion Joints
3.4.1 Correlation Models Between Displacements and Dominant Environmental Factors
3.4.2 Definition of Damage Detection Index
3.4.3 Statistical Control Chart
3.4.4 False Positive Tests
3.4.5 Damage Sensitivity Test
3.5 Summary
References
4 Modal Frequency-Based Structural Damage Detection
4.1 Introduction
4.2 Identification of Modal Frequencies for the RSB
4.3 Temperature-Induced Variability of Modal Frequencies
4.3.1 Correlation Analysis of Temperature-Frequency
4.3.2 Removal of Temperature Effect
4.4 Wind-induced and Traffic-Induced Modal Variability
4.4.1 Correlation Analysis of Traffic-Frequency
4.4.2 Correlation Analysis of Wind-Frequency
4.5 Framework of Damage Detection
4.5.1 Machine Learning-Based Frequency-Temperature Model
4.5.2 Probabilistically Modeling and Normalization
4.5.3 Control Charts of the Healthy Phase
4.5.4 Control Charts of the Unknown Phase
4.6 Framework Application
4.6.1 Elimination of the Temperature Effects
4.6.2 Normalization of the Modal Frequencies
4.6.3 Damage Detection Based on Control Chart
4.7 Summary
References
Part 3
5 Fatigue Monitoring of Welded Details
5.1 Introduction
5.2 Fatigue Stress Monitoring of the Runyang Yangtze Bridge
5.3 Fatigue Damage Determination Framework
5.3.1 S-N Curves of Welded Orthotropic Decks
5.3.2 Equivalent Stress Range and Fatigue Damage
5.4 Processing of Strain Measurements
5.4.1 Original Strain Data Analysis
5.4.2 Temperature Effect on Stress Range Histogram
5.4.3 Random Interference in Stress Range Histogram
5.5 Necessity of Long-Term Monitoring
5.5.1 Medium-Term Monitoring
5.5.2 Long-Term Monitoring
5.6 Fatigue Life Prediction
5.7 Summary
References
6 Fatigue Reliability Analysis for Welded Details
6.1 Introduction
6.2 Framework of the Fatigue Reliability Analysis
6.2.1 Fatigue Limit State Function
6.2.2 Probabilistic Model for the Equivalent Stress Range
6.2.3 Fatigue Reliability Estimation Methods
6.3 Fatigue Reliability of the Welded Details of the RSB
6.3.1 Stress Range Histograms
6.3.2 Probability Density Fun
截图
随便看

免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me