第1章 引论
1.1 数值计算方法和它的主要内容
1.2 计算机中数的浮点表示
1.3 误差的基本概念
1.4 算法的数值稳定性
习题1
第2章 函数基本逼近(一)——插值逼近
2.1 引言
2.2 Lagrange插值
2.3 Hermite插值
2.4 误差分析
2.5 分段低次多项式插值
*2.6 B样条函数与样条插值
习题2
第3章 函数基本逼近(二)——最佳逼近
3.1 最佳逼近问题的提出
3.2 线性赋范空间的最佳逼近及存在性定理
3.3 最佳一致逼近多项式
3.4 最小偏差于零的多项式——ChebysheV多项式
3.5 内积空间的最佳逼近
3.6 最佳平方逼近与正交多项式
3.7 数据拟合的最小二乘法
3.8 周期函数的最佳逼近与陕速Fourier变换
习题3
第4章 数值积分与数值微分
4.1 引言
4.2 Newton-COteS求积公式
4.3 复化求积公式
4.4 基于复化梯形公式的高精度求积算法
4.5 Gauss型求积公式
4.6 奇异积分计算
4.7 数值微分
习题4
第5章 线性代数方程组求解
5.1 预备知识
5.2 Gauss消去法、矩阵分解
5.3 扰动分析、Gauss消去法的舍入误差
5.4 迭代方法
5.5 共轭梯度法
5.6 预条件共轭梯度法
习题5
第6章 矩阵特征值问题的解法
6.1 特征值问题及相关结果
6.2 乘幂法与反乘幂法
6.3 约化矩阵的Householder方法
6.4 QR方法
6.5 实对称矩阵特征值问题的解法
习题6
第7章 非线性方程的数值解法
7.1 二分法
7.2 简单迭代法
7.3 Newton类迭代方法
7.4 非线性方程组
习题7
第8章 常微分方程数值解法
8.1 引论
8.2 Euler方法
8.3 线性多步法
8.4 线性多步法的进一步讨论
8.5 Runge-Kutta方法
8.6 刚性问题简介
8.7 边值问题的数值方法
习题8
第9章 M0nte Carlo方法简介
9.1 基本原理
9.2 随机数和随机抽样
9.3 Monte Carlo方法应用举例
第10章 最优化方法
10.1 线性规划问题及单纯形方法
10.2 无约束非线性优化问题及最速下降法
10.3 几个线性规划问题的实例
习题10
第11章 多层网格法
11.1 两点边值问题及其有限差分离散
11.2 Richardson迭代法
11.3 两层网格法
11.4 多层网格法
11.5 完全多层网格法
11.6 程序设计与工作量估计
参考文献