网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 理论统计(英文版) |
分类 | 经济金融-金融会计-会计 |
作者 | (美)R.W.基纳 |
出版社 | 世界图书出版公司 |
下载 | ![]() |
简介 | 内容推荐 R.W.基纳著的《理论统计(英文版)》是一本内容简明,结构严谨的理论统计教科书,内容包括自助法、非参数回归、同变估计、经验贝叶斯、序贯设计和分析。本书各章有丰富的习题,解答在附录中提供。读者需具备微积分、线性代数、概率论、数学分析和拓扑等数学基础知识。目次:概率和测度;指数族;风险,充分性,完整性;无偏估计;曲指数族;条件分布;贝叶斯估计;大样本理论;估计方程和最大概似值;同变估计;经验贝叶斯法和收缩估计;假设检验;高维优化试验等。 目录 1 Probability and Measure 1.1 Measures 1.2 Integration 1.3 Events, Probabilities, and Random Variables 1.4 Null Sets 1.5 Densities 1.6 Expectation 1.7 Random Vectors 1.8 Covariance Matrices 1.9 Product Measures and Independence 1.10 Conditional Distributions 1.11 Problems 2 Exponential Families 2.1 Densities and Parameters 2.2 Differential Identities 2.3 Dominated Convergence 2.4 Moments, Cumulants, and Generating Functions 2.5 Problems 3 Risk, Sufficiency, Completeness, and Ancillarity 3.1 Models, Estimators, and Risk Functions 3.2 Sufficient Statistics 3.3 Factorization Theorem 3.4 Minimal Sufficiency 3.5 Completeness 3.6 Convex Loss and the Rao-Blackwell Theorem 3.7 Problems 4 Unbiased Estimation 4.1 Minimum Variance Unbiased Estimators 4.2 Second Thoughts About Bias 4.3 Normal One-Sample Problem--Distribution Theory 4.4 Normal One-Sample Problem--Estimation 4.5 Variance Bounds and Information 4.6 Variance Bounds in Higher Dimensions 4.7 Problems 5 Curved Exponential Families 5.1 Constrained Families 5.2 Sequential Experiments 5.3 Multinomial Distribution and Contingency Tables 5.4 Problems 6 Conditional Distributions 6.1 Joint and Marginal Densities 6.2 Conditional Distributions 6.3 Building Models 6.4 Proof of the Factorization Theorem 6.5 Problems 7 Bayesian Estimation 7.1 Bayesian Models and the Main Result 7.2 Examples 7.3 Utility Theory 7.4 Problems 8 Large-Sample Theory 8.1 Convergence in Probability 8.2 Convergence in Distribution 8.3 Maximum Likelihood Estimation 8.4 Medians and Percentiles 8.5 Asymptotic Relative Efficiency 8.6 Scales of Magnitude 8.7 Almost Sure Convergence 8.8 Problems 9 Estimating Equations and Maximum Likelihood 9.1 Weak Law for Random Functions 9.2 Consistency of the Maximum Likelihood Estimator 9.3 Limiting Distribution for the MLE 9.4 Confidence Intervals 9.5 Asymptotic Confidence Intervals 9.6 EM Algorithm: Estimation from Incomplete Data 9.7 Limiting Distributions in Higher Dimensions 9.8 M-Estimators for a Location Parameter 9.9 Models with Dependent Observations 9.10 Problems 10 Equivariant Estimation 10.1 Group Structure 10.2 Estimation 10.3 Problems 11 Empirical Bayes and Shrinkage Estimators 11.1 Empirical Bayes Estimation 11.2 Risk of the James-Stein Estimator 11.3 Decision Theory 11.4 Problems 12 Hypothesis Testing 12.1 Test Functions, Power, and Significance 12.2 Simple Versus Simple Testing 12.3 Uniformly Most Powerful Tests 12.4 Duality Between Testing and Interval Estimation 12.5 Generalized Neyman-Pearson Lemma 12.6 Two-Sided Hypotheses 12.7 Unbiased Tests 12.8 Problems 13 Optimal Tests in Higher Dimensions 13.1 Marginal and Conditional Distributions 13.2 UMP Unbiased Tests in Higher Dimensions 13.3 Examples 13.4 Problems 14 General Linear Model 14.1 Canonical Form 14.2 Estimation 14.3 Gauss-Markov Theorem 14.4 Estimating σ2 14.5 Simple Linear Regression 14.6 Noncentral F and Chi-Square Distributions 14.7 Testing in the General Linear Model 14.8 Simultaneous Confidence Intervals 14.9 Problems 15 Bayesian Inference: Modeling and Computation 15.1 Hierarchical Models 15.2 Bayesian Robustness 15.3 Markov Chains 15.4 Metropolis-Hastings Algorithm 15.5 Gibbs Sampler 15.6 Image Restoration 15.7 Problems 16 Asymptotic Optimality 16.1 Superefficiency 16.2 Contiguity 16.3 Local Asymptotic Normality 16.4 Minimax Estimation of a Normal Mean 16.5 Posterior Distributions 16.6 Locally Asymptotically Minimax Estimation 16.7 Problems 17 Large-Sample Theory for Likelihood Ratio Tests 17.1 Generalized Likelihood Ratio Tests 17.2 Asymptotic Distribution of 2 log A 17.3 Examples 17.4 Wald an |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。