简介 |
内容推荐 群和群作用是数学研究的重要对象,拥有强大的力量并且富于美感,这可以通过它广泛出现在诸多不同的科学领域体现出来。 此多卷本手册由相关领域专家撰写的一系列综述文章组成,首次系统地展现了群作用及其应用,内容囊括经典主题的讨论、近来的热点专业问题的论述,有些文章还涉及相关的历史。季理真,帕帕多普洛斯,丘成桐编的《群作用手册(第Ⅳ卷英文版)(精)》填补了数学著作中的一项空白,适合于从初学者到相关领域专家的各个层次读者阅读。 目录 Part A: Asymptotic and Large-scale Geometry Zooming in on the Large-scale Geometry of Locally Compact Groups Actions of Quasi-MSbius Groups Quasi-isometric Rigidity of Piecewise Geometric Manifolds Mostow Type Rigidity Theorems Part B: Representation Spaces and Representation Varieties,Homogeneous Spaces, Symmetric Space,Mostow Rigidity Discrete Isometry Groups of Symmetric Spaces Linearization of Algebraic Group Actions Constructing Quotients of Algebraic Varieties by Linear Algebraic Group Actions Reidemeister Torsion, Hyperbolic Three-manifolds, and Character Varieties Diophantine Approximation on Subspaces of Rn and Dynamics on Homogeneous Spaces Actions of Automorphism Groups of Lie Groups Spectral Rigidity of Group Actions on Homogeneous Spaces Part C: Dynamics: Property T, Group Actions on the Circle,Actions on Hilbert Spaces and Other Symmetries Proper Isometric Actions on Hilbert Spaces: a-(T)-menability and Haagerup Property Hyperbolic Abelian Actions and Rigidity Generalizations of Almost Periodic Functions Rigidity and Flexibility of Group Actions on the Circle Index
|