![]()
内容推荐 《现代几何结构和场论(英文版)(精)》是作为微分流形上的几何和其上最重要结构的黎曼几何现代形式的一个引论。作者诺维科夫、泰曼诺夫的观点是:黎曼几何所有构造的源头是一个流形,它使我们可以计算切向量的标量积。按此方式,作者向大家展示了黎曼几何对于现代数学的许多基本领域及其应用所产生的巨大影响。 几何是纯数学和自然科学——首先是物理学——之间的一个桥梁。自然界的基本规律就是由描述各种物理量的几何场之间的关系所构建的。 对几何对象整体性质的研究促进了拓扑学的意义深远的发展,这包括了纤维丛的拓扑与几何。 描述许多物理现象的哈密顿系统的几何理论推动了辛几何和泊松几何的发展。书中讲述的场论和多维变分学将数学与理论物理统一起来。 复几何与代数流形的几何则将黎曼几何与现代复分析,以及与代数和数论统一起来。 本书的预备知识包括几个基本的本科课程,诸如高等微积分、线性代数、常微分方程以及基础拓扑学。 目录 Preface to the English Edition Preface Chapter 1. Cartesian Spaces and Euclidean Geometry 1.1. Coordinates. Space-time 1.1.1. Cartesian coordinates 1.1.2. Change of coordinates 1.2. Euclidean geometry and linear algebra 1.2.1. Vector spaces and scalar products 1.2.2. The length of a curve 1.3. Affine transformations 1.3.1. Matrix formalism. Orientation 1.3.2. Affine group 1.3.3. Motions of Euclidean spaces 1.4. Curves in Euclidean space 1.4.1. The natural parameter and curvature 1.4.2. Curves on the plane 1.4.3. Curvature and torsion of curves in R3 Exercises to Chapter 1 Chapter 2. Symplectic and Pseudo-Euclidean Spaces 2.1. Geometric structures in linear spaces 2.1.1. Pseudo-Euclidean and symplectic spaces 2.1.2. Symplectic transformations 2.2. The Minkowski space 2.2.1. The event space of the special relativity theory 2.2.2. The Poincare group 2.2.3. Lorentz transformations Exercises to Chapter 2 Chapter 3. Geometry of Two-Dimensional Manifolds 3.1. Surfaces in three-dimensional space 3.1.1. Regular surfaces 3.1.2. Local coordinates 3.1.3. Tangent space 3.1.4. Surfaces as two-dimensional manifolds 3.2. Riemannian metric on a surface 3.2.1. The length of a curve on a surface 3.2.2. Surface area 3.3. Curvature of a surface 3.3.1. On the notion of the surface curvature 3.3.2. Curvature of lines on a surface 3.3.3. Eigenvalues of a pair of scalar products 3.3.4. Principal curvatures and the Gaussian curvature 3.4. Basic equations of the theory of surfaces 3.4.1. Derivational equations as the "zero curvature" condition. Gauge fields 3.4.2. The Codazzi and sine-Gordon equations 3.4.3. The Gauss theorem Exercises to Chapter 3 Chapter 4. Complex Analysis in the Theory of Surfaces 4.1. Complex spaces and analytic functions 4.1.1. Complex vector spaces 4.1.2. The Hermitian scalar product 4.1.3. Unitary and linear-fractional transformations 4.1.4. Holomorphic functions and the Cauchy-Riemann equations 4.1.5. Complex-analytic coordinate changes 4.2. Geometry of the sphere 4.2.1. The metric of the sphere 4.2.2. The group of motions of a sphere 4.3. Geometry of the pseudosphere 4.3.1. Space-like surfaces in pseudo-Euclidean spaces 4.3.2. The metric and the group of motions of the pseudosphere …… Chapter 5. Smooth Manifolds Chapter 6. Groups of motions Chapter 7. Tensor Algebra Chapter 8. Tensor Fields in Analysis Chapter 9. Analysis of Differential Forms Chapter 10. Connections and Curvature Chapter 11. Conformal and Complex Geometries Chapter 12. Morse Theory and Hamiltonian Formalism Chapter 13. Poisson and Lagrange Manifolds Chapter 14. Multidimensional Variational Problems Chapter 15. Geometric Fields in Physics Bibliography Index
|