《代数图论(第2版)》作者比格斯旨在用代数的语言表述图的性质,1974年初版,并备受争议的专著,在这版做了很多修订。第一部分处理了线性代数和矩阵理论在图论中的应用。接下来展开讲述了色多项式理论,该理论和理论物理、扭结理论中的交互模型有着很强的关联。最后讲述了对称和一般性质,这和代数组合、群论的其他分支有着重要的关系
Preface
1 Introduction
PART ONE - LINEAR ALGEBRA IN GRAPH THEORY
2 The spectrum of a graph
3 Regular graphs and line graphs
4 Cycles and cuts
5 Spanning trees and associated structures
6 The tree-number
7 Deteminant expansions
8 Vertex-partitions and the spectrum
PART TWO - COLOURING PROBLEMS
9 The chromatic polynonual
10 Subgraphexpansions
11 The multiplicative expansion
12 The induced subgraph expansion
13 The Tutte polynomial
14 Chromatic polynomials and spanning trees
PART THREE - SYMMETRY AND REGULARITY
15 Automorphisms of graphs
16 Vertex-transitive graphs
17 Symmetric graphs
18 Symmetric graphs of degree three
19 The covering-graph construction
20 Distance-transitive graphs
21 Feasibility ofintersection arrays
22 Imprimitivity
23 Minimal regular graphs with given girth
References
Index