兰兹编著的《机器学习与R语言》共12章:第1章介绍机器学习的基本概念和理论,并介绍用于机器学习的R软件环境的准备;第2章介绍如何应用R来管理数据,进行数据的探索分析和数据可视化;第3~9章介绍典型的机器学习算法,包括k近邻分类算法、朴素贝叶斯算法、决策树和规则树、回归预测、黑盒算法一一神经网络和支持向量机、关联分析、k均值聚类,并给出大量的实际案例和详细的分析步骤,例如乳腺癌的判断、垃圾短信的过滤、贷款违约的预测、毒蘑菇的判别、医疗费用的预测、建筑用混凝土强度的预测、光学字符的识别、超市购物篮关联分析以及市场细分等;第10章介绍模型性能评价的原理和方法,第11章给出提高模型性能的几种常用方法;第12章讨论用R进行机器学习时可能遇到的一些高级专题,如特殊形式的数据、大数据集的处理、并行计算和CPU计算等技术。
随着大数据的概念变得越来越流行,对数据的探索、分析和预测成为大数据分析领域的基本技能之一。作为探索和分析数据的基本理论和工具,机器学习和数据挖掘成为时下炙手可热的技术。R作为功能强大并且免费的数据分析工具,在数据分析领域获得了越来越多用户的青睐。
兰兹编著的《机器学习与R语言》通过丰富的实际案例来探索如何应用R来进行现实世界问题的机器学习,如何从数据中获取可以付诸行动的洞察力。本书案例清晰而实用,讲解循序渐进,是一本用R进行机器学习的实用指南,既适用于机器学习的初学者,也适用于具有一定经验的老手,本书将帮助他们回答有关R的所有问题。
通过阅读本书,你将学到:
用R准备用于机器学习的数据
用R进行数据探索和数据可视化
用k近邻方法进行数据分类
应用朴素贝叶斯方法进行数据分类
应用决策树、规则和支持向量机进行预测
用线性回归预测数值型数据
用神经网络对数据建模
应用购物篮分析的关联规则找出数据中的模式
通过对数据聚类进行市场细分