网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 Numerical Methods in Bioinformatics An Introduction
分类 科学技术-自然科学-生物科学
作者 Jiasong Wang//Ming Yan
出版社 科学出版社
下载
简介
目录

PREFACE

CHAPTER 1 SOME BIOLOGICAL CONCEPTS

1.1 Cell

1.2 Genetic Material: DNA, Gene and RNA

1.2.1 DNA

1.2.2 Gene

1.2.3 RNA

1.3 Protein and Amino Acids

1.4 Chromosome

1.5 Omics

1.5.1 Genomics

1.5.2 Microarray

1.5.3 Proteomics

1.5.4 Lipidomics

REFERENCES

CHAPTER 2 GRAPHICAL REPRESENTATIONS OF DNA SEQUENCE

2.1 Three-Dimension (3-D) GraphicaIRepresentation

2.2 2-DGraphicalRepresentatio

2.3 2-D GraphicalRepresentations Without Degeneracy

2.4 Used a 1-D NumerioalRepresentation offourNucleotides to Construct a 2-D Graplucal Representation ofthe DNA Sequence

REFERENCES 

CHAPTER 3 NUMERICAL REPRESENTATIONS OF DNA SEQUENCE

3.1 4-D and 3-D Numerical Representations of a DNA Sequence

3.2 2-D Numerical Representations of a DNA Sequence

3.3 The Complex NumericalRepresentation

3.4 1-D Numerical Representations of four Nucleotides and 2-D Graphical

Representation of a DNA Sequence

3.5 The Representations ofFeature Vector, Genome Space and Matrix Representation of DNA Sequence

3.6 The Numerical Representation Based on Physical, Chemical and Structural

Properties of DNA Sequence

3.6.1 The numericalrepresentations based on some attribute equivalences

ofnucleotides

3.6.2 The representation of DNA by the inspiration from codon and the idea ofthree attribute equivalences

3.6.3 EIIPnumericalrepresentationfornucleotides

REFERENCES

CHAPTER 4 NUMERICAL REPRESENTATIONS OF PROTEIN

4.1 1-D Numericaland GraphicalRepresentations ofthe AminoAcid Sequence

4.2 2-DNumericaland GraphicalRepresentations ofthe AminoAcid Sequence

4.3 A 2-D Graphical Representation and Moment Vector Representation of Protein

4.4 3-D Numerical Representation of Protein

4.5 The 10-D Representation ofan Amino Acid

4.6 The Vector andMatrix Representations of Protein Sequence and Protein Space

4.7 Other Schemes of the Representation for Protein

REFERENCES

CHAPTER 5 PRACTICAL ORTHOGONAL TRANSFORM

5.1 Some Features and Algorithms for the Discrete Fourier Transform

5.1.1 Fourier transforms ofthe original sequence and its subsequence

5.1.2 The independency ofthe Fourier transforms at several frequencies

5.1.3 The Fourier transform ofsymbolic sequence

5.1.4 Fourier transform ofbinary sequence

5.1.5 Several algorithms ofFourier transform

5.1.6 The properties ofFourier transform ofreal sequence

5.2 WaveletAnalysis

5.2.1 Introduction

5.2.2 Multiresolution analysis ofa function by Haar scaling and wavelet

function

5.2.3 Construction of wavelet systems

5.2.4 Mallet transform

REFERENCES

CHAPTER 6 IDENTIFYING PROTEIN-CODING REGIONS (EXONS) BY NUCLEOTIDEDIS TRIBUTIONS

6.1 Portein Coding Regions Finding in DNA Sequence

6.1.1 Introduction

6.1.2 The stochastic simulation and several computing formulae

6.1.3 FEND algorithm,predicting protein coding regions from nucleotide distributions on the three positions ofa DNA sequence

6.1.4 Performance evalumion ofFEND algorithm

6.2 The Experiment for Distinguishing Exon and Intron Sequences by a Threshold

6.2.1 Motivation

6.2.2 Idea ofdistinguishing exon and intron sequences

6.2.3 Results and discussion

REFERENCES

CHAPTER 7 PROTEINCOMPARISONBYORTHOGONALTRANSFORMS

7.1 Protein Comparison by Discrete Fourier Transformation(DFT)

7.1.1 EIIP representation ofprotein sequence

7.1.2 Symmetry ofdiscrete Fouriertransformofreal sequence

7.1.3 Cross—spectral function

7.2 Protein Comparison by Discrete Wavelet Transformation

7.2.1 Several techniques needed for DWT method

7.2.2 The performance ofthe DWT method

REFERENCES

CHAPTER 8 THE APPLICATION OF VECTOR REPRESENTATIONS TO BIOLOGICAL MOLECULE ANALYSIS

 8.1 Use Feature Vector toAnalyze DNA Sequences

8.1.1 Feature vector representation ofDNA sequence

8.1.2 Comparing DNA sequences

 8.2 A Protein Map and its Applications.

8.2.1 Recalling a 2-D graphical representation and moment vector representation ofprotein]

8.2.2 Protein map and cluster analysis

 8.3 An Appendix:Introduction to Cluster Analysis1

 REFERENCES

CHAPTER 9 THE STATISTICS ANALYSIS OF LARGE AMOUNT OF EXPERIMENTAL DATA

9.1 A Way tO Process Microarray Data

9.1.1 Data form

9.1.2 Microarray data set.

9.1.3 Preliminary filtering

9.1.4 Assessing normalization

9.1.5 Hypothesis test.

9.1.6 Conclusion

9.2 The Statistical Analysis ofa Set ofLipidomics Data

9.2.1 Introduction

9.2.2 Statistical techniques ofinitial data processing

9.2.3 Initial data arrangement

9.2.4 Hypothesis testing analysis

REFERENCES

CHAPTER 10 APPLY SINGULAR VALUE DECOMPOSITl0N TO MICRoARRAVANALYSIS

10.1 SVD,PCA and GSVD

10.1.1 Singularvalue decomposition

10.1.2 Principal component analysis

10.1.3 Generalized singular value decomposition

10.2 Apply SVD/PCA to Microarray Analysis

10.3 GSVD Analyzes the Microarray Data

REFERENCES

CHAPTER 11 DYNAMICALANALYSIS MODELS OF GENE EXPRESSION

11.1 DifierentialEquationsModel ofGeneExpression

11.1.1 Transcription model

11.1.2 Nonlinear dynamic equ~ions

11.1.3 Linearization ofthenonlineartranscriptionmodel

11.1.4 Approximating coefficientmatrixMby Fourier series

11.1.5 Solutiontotranscriptionmatrix Cand V

11.2 Modified Linear Differential Equations Model

11.3 DynamicalModelBased on SingularValueDecomposition.

11.3.1 Introduction

11.3.2 Reducing gen’s number

11.3.3 The approachbasedon singularvaluedecomposition(SVD)

11.3.4 The methods ofsolving dynamical models

REFERENCES

CHAPTER 12 MISSING MICROARRAY DATA INPUTTING

12.1 The Ad Hoc Methods

12.2 Missing Data Inputting Based on SVD

12.2.1 A llew way for missing data inputting

12.2.2 0ther method based on SVD

 12.3 Weighted K-Nearest Ne Jlghbors.KNN.Impute Algorithm

 12.4 Estimation of Missing,alues in Microarray Data Based on the Least Square Prineiple

12.4.1 Least squares estimate 0fthe unknown variable

12.4.2 The least square estimation ofmissing data based on genes.

12.4.3 The least square estimation ofmissing data based on arrays

12.4.4 Combining the gene and array based estimates

 12.5 Local Least Square Inputting rLLSinputel

12.5.1 Selecting genes

12.5.2 Gene-wise fornmlation of 10cal least squares imputation

 12.6 The Comparison ofthe Methods ofMissing Data Inputting

 REFERENCES

PLATF

编辑推荐

Jiasong Wang编的《Numerical Methods in Bioinformatics An Introduction》介绍了生物信息学计算方法如下:数值替换为代表的数值或图形序列的DNA和蛋白质序列;傅立叶和小波变换应用于基因的鉴定和蛋白质的比较;基于大量实验数据的微阵列或脂类组学数据集,合适的统计和计算的方法研究中使用的两套生物特征,特征向量的表象下,两种生物分子分类的聚类分析完成;微分方程和差分方程模型被建立为代表的生物动力学过程;和丢失的数据输入技术有助于估计丢失条目来自生物学观察与实验,等等。此外,还介绍了一些生物的概念通过这些方法。

内容推荐
本书介绍了紫外—可见和荧光光谱、圆二色光谱、核磁共振波谱、量熟法核热分析、电子显微技术、振动光谱、结合动力学等问题,评述和讨论了可能开发为研究应用的物理方法的发展前景。
随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/4/1 6:45:58