网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 迁移学习--理论与实践
分类
作者 邵浩
出版社 上海交通大学出版社
下载
简介
编辑推荐

《迁移学习--理论与实践》(作者邵浩)着重介绍了应用最为广泛的分类学习,将最前沿的研究进行了归纳总结,并通过实际算法分析,将领域内的最新进展提供给读者,使读者能够使用迁移学习的工具构建模型并应用到实际问题,本书适合从事相关研究工作的人员参考阅读。

内容推荐

《迁移学习--理论与实践》(作者邵浩)着眼于管理实际中的资源再利用,对数据挖掘领域最前沿的迁移学习进行了详细阐述,并着重介绍了应用最为广泛的分类学习,将最前沿的研究进行了归纳总结,并通过实际算法分析,将领域内的最新进展提供给读者,使读者能够使用迁移学习的工具构建模型并应用到实际问题。《迁移学习--理论与实践》主要读者对象为具有管理和计算机背景并在数据挖掘领域有初步研究的学者。

目录

Preface

Chapter 1 Introduction

1.1 Background and Motivation

1.2 COntributiong

1.2.1 Extended MDLP for Transfer Learning

1.2.2 Compact Coding for Hyperplane Classifiers in Transfer Learning

1.2.3 Transfer Active Learning

1.2.4 Gaussian Process for Transfer Learning

1.3 Book Overview

Chapter 2 Literature Review and Preliminaries for MDLP

2.1 Transfer Learning

2.2 Active Learning and Transfer Active Learning

2.3 Preljminaries for MD[.P

Chapter 3 Extended MDL Principle for Feature-based Transfer

Learning

3.1 IntroductiOn

3.2 Problem Statement

3.3 Preliminaries for Encoding

3.3.1 Theoretical Foundation of the EMDLP

3.3.2 Adaptation of the EMDLP to Our Problem

3.4 Supervised Inductive Transfer Learning Algorithm

3.4.1 EMDLP with Incremental Search

3.4.2 EMDLP with Hill Climbing

3.5 Experiments

3.5.1 Experimental Settings

3.5.2 Experimental Results on Synthetic Data Sets

3.5.3 Experimental Results on Real Data Sets

3.6 Summary

Chapter 4 Compact Coding for Hyperplane Classifiers in a

Heterogeneous Environment

4.1 Introduction

4.2 Problem Setting

4.3 Compact Coding for Hyperplane Classifiers in

Heterogeneous Environment

4.3.1 Macro Level:Arrange Related Tasks

4.3.2 Micro Level Evaluation

4.3.3 The Transfer Learning Algorithm

4.4 Experiments

4.4.1 Experimental Setting

4.4.2 Experimental Results

4.5 Summary

Chapter 5 Adaptive Transfer Learning with Query by

Committee

5.1 IntroductiOn

5.2 Problem Setting and Preliminaries

5.3 Probabilistic Framework for ALTL

5.4 The ALTL Algorithm and Analysis

5.4.1 The Procedure of ALTL

5.4.2 Termination Condition and Analysis

5.5 Experiments

5.5.1 Experimental Setting

5.5.2 Results on Synthetic Data Sets

5.5.3 Results on Real Data Sets

5.6 Summary

Chapter 6 Gaussian Process for Transfer Learning through

Minimum Encoding

6.1 IntrOduction

6.2 Gaussian Process for Classification

6.3 The GPTL Algorithm

6.3.1 Arrange Related Tasks

6.3.2 The Instance Level Similarities

6.4 Experiments

6.5 Summary

Chapter 7 Concluding Comments

Appendix A Target Concepts in Chapter 3

Bibliography

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/4/8 16:17:15