《线性控制系统工程》的特点是,从非控制工程专业本科生对控制理论的需求和教学学时相对要少的实情出发,相比于流行的控制工程专业控制理论教材,在体系结构和内容安排上作了富有新意的改革。
本书作者德赖斯的教学实践表明,这种体系结构和内容安排已经取得了很好的效果,通过较少的教学学时,既加深了学生对基本理论和基本方法的理解深度和运用能力,也提高了学生运用所学知识解决实际工程问题的能力,这对于非控制工程专业本科生的知识需要和认识规律无疑是很合适的。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 线性控制系统工程/信息技术学科与电气工程学科系列 |
分类 | |
作者 | (美)德赖斯 |
出版社 | 清华大学出版社 |
下载 | ![]() |
简介 | 编辑推荐 《线性控制系统工程》的特点是,从非控制工程专业本科生对控制理论的需求和教学学时相对要少的实情出发,相比于流行的控制工程专业控制理论教材,在体系结构和内容安排上作了富有新意的改革。 本书作者德赖斯的教学实践表明,这种体系结构和内容安排已经取得了很好的效果,通过较少的教学学时,既加深了学生对基本理论和基本方法的理解深度和运用能力,也提高了学生运用所学知识解决实际工程问题的能力,这对于非控制工程专业本科生的知识需要和认识规律无疑是很合适的。 内容推荐 由Morris Drieis编著的“Linear Control Systems Engineering”一书出版于1995年。《线性控制系统工程》(作者德赖斯)的定位是要为机械工程、电机工程、电子工程、计算机工程等非控制工程专业的本科生提供一本内容适度、实用性强和学时较少的控制理论教材。内容覆盖了经典控制理论和现代控制理论的基础部分,方法包括了频率响应法、根轨进法和状态空间法。本书已被美国多所知名大学采用作为电子工程等专业的本科层次的控制理论教材或主要教学参考书。 《线性控制系统工程》的主要特点是,从非控制工程专业本科生对控制理论的需求和教学学时相对要少的实情出发,在体系结构和内容安排上作了富有新意的改革。例如,破除章节式结构、设立专题;破除按一个结论引入例子的惯例,增加来自不同专业工程的研究案例。 目录 Preface MODULE 1 INTRODUCTION TO FEEDBACK CONTROL MODULE 2 TRANSFER FUNCTIONS AND BLOCK DIAGRAM ALGEBRA Transfer Functions Block Diagram Algebra MODULE 3 FIRST-ORDER SYSTEMS Impulse Response Step Response Ramp Response Harmonic Response First-Order Feedback Systems Complex-Plane Representation: Poles and Zeros Poles and Zeros of First-Order Systems Dominant Poles MODULE 4 SECOND-ORDER SYSTEMS Second-Order Electrical System Step Response MODULE 5 SECOND-ORDER SYSTEM TIME-DOMAIN RESPONSE Ramp Response Harmonic Response Relationship between System Poles and Transient Response Time-Domain Performance Specifications MODULE 6 SECOND-ORDER SYSTEMS: DISTURBANCE REJECTION AND RATE FEEDBACK Open- and Closed-Loop Disturbance Rejection Effect of Velocity Feedback MODULE 7 HIGHER-ORDER SYSTEMS Reduction to Lower-Order Systems Third-Order Systems Effect of a Closed-Loop Zero Occurrence of Closed-Loop Zeros MODULE 8 SYSTEM TYPE: STEADY-STATE ERRORS Impulse Input Step Input Ramp Input Acceleration Input Non-Unity-Feedback Control Systems MODULE 9 ROUTH'S METHOD, ROOT LOCUS: MAGNITUDE AND PHASE EQUATIONS Routh's Stability Criterion Root Locus Method: Magnitude and Phase Equations MODULE 10 RULES FOR PLOTTING THE ROOT LOCUS MODULE 11 SYSTEM DESIGN USING THE ROOT LOCUS MultiLoop System System Design in the Complex Plane Performance Requirements as Complex-Plane Constraints Steady-State Error Desirable Areas of Complex Plane for "Good" Response MODULE 12 FREQUENCY RESPONSE AND NYQUIST DIAGRAMS Frequency Response Nyquist Diagrams from Transfer Functions MODULE 13 NYQUIST STABILITY CRITERION Conformal Mapping: Cauchy's Theorem Application to Stability Some Comments on Nyquist Stability Alternative Approach to Nyquist Stability Criterion MODULE 14 NYQUIST ANALYSIS AND RELATIVE STABILITY Conditional Stability Gain and Phase Margins MODULE 15 BODE DIAGRAMS Bode Diagrams of Simple Transfer Functions Bode Diagrams of Compound Transfer Functions Elemental Bode Diagrams MODULE 16 BODE ANALYSIS, STABILITY, AND GAIN AND PHASE MARGINS Conditional Stability Gain and Phase Margins in the Bode Diagram System Type and Steady-State Error from Bode Diagrams Further Discussion of Gain and Phase Margins MODULE 17 TIME RESPONSE FROM FREQUENCY RESPONSE Bode Diagram from the Root Locus Closed-Loop Time Response from Open-Loop Phase Margin Time Response of Higher-Order Systems MODULE 18 FREQUENCY-DOMAIN SPECIFICATIONS AND CLOSED-LOOP FREQUENCY RESPONSE Frequency-Domain Specifications Closed-Loop Frequency Response from Nyquist Diagram Closed-Loop Frequency Response from Bode Diagram Gain for a Desired Mp from the Nyquist Diagram Gain For a Desired Mp from the Nichols Chart Non-Unity-Feedback Gain Systems MODULE 19 PHASE LEAD COMPENSATION Multiple-Design Constraints Transfer Function of Phase Lead Element Phase Lead Compensation Process Comments on the Applicability and Results of Phase Lead Compensation MODULE 20 PHASE LAG AND LEAD-LAG COMPENSATION Transfer Function of Phase Lag Element Phase Lag Compensation Process Comments on Phase Lag Compensation Lead-Lag Compensation Transfer Function of a Lead-Lag Element Lead-Lag Compensation Process MODULE 21 MULTIMODE CONTROLLERS Proportional Control Proportional-Plus-Integral Control Proportional-Plus-Derivative Control Proportional-Plus-Integral-Plus-Derivative Control MODULE 22 STATE-SPACE SYSTEM DESCRIPTIONS State-Space Form Equations from Transfer Functions Transfer Function from State-Space Form Transformation of State Variable and Invariability of System Eigenvectors Canonical Forms and Decoupled Systems Relationship between Eigenvalues and System Poles MODULE 23 STATE-SPACE SYSTEM RESPONSE, CONTROLLABILITY, AND OBSERVABILITY Direct Numerical Solution of the State Equation Solution Using State Transition Matrix Solution Using Laplace Transforms System Stability Controllability and Observability MODULE 24 STATE-SPACE CONTROLLER DESIGN Direct Calculation of Gains by Comparison with Characteristic Equation Pole Placement via Control Canonical Form of State Equations Pole Placement via Ackermann's Formula MODULE 25 STATE-SPACE OBSERVER DESIGN Observer Synthesis Compensator Design CONTROL SYSTEM DESIGN: CASE STUDIES MODULE 26 WAVE ENERGY ABSORBTION DEVICE Open loop frequency response, bandwidth, selection of feedback gains, closed loop frequency response, Nichols charts MODULE 27 MISSILE ATTITUDE CONTROLLER Model construction, block diagram representation, multimode controller design, root locus, state-space analysis and controller design, pole placement MODULE 28 ROBOTIC HAND DESIGN Multi-loop feedback systems, steady state values of force and position, control system synthesis, adaptive control MODULE 29 PUMPED STORAGE FLOW CONTROL SYSTEM Hydraulic system modeling, characteristic equation, P + I controller, state-space analysis, controllability, Ackermann's method MODULE 30 SHIP STEERING CONTROL SYSTEM Modeling, root locus, stabilization of unstable systems, performance constraints, iterative root locus, rate feedback MODULE 31 CRUISE MISSILE ALTITUDE CONTROL SYSTEM Design in frequency domain, signal and noise, design constraint boundaries, open loop design from closed loop requirements, lead-lag controller MODULE 32 MACHINE TOOL POWER DRIVE SYSTEM WITH FLEXIBILITY System modeling, P + D control, poor performance, state space model, pole placement, comparison of performance APPENDIX 1 REVIEW OF LAPLACE TRANSFORMS AND THEIR USE IN SOLVING DIFFERENTIAL EQUATIONS Linear Properties Shifting Theorem Time Differentials Final-Value Theorem Inverse Transforms Solving Linear Differential Equations Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。