特洛特贝格编写的《多重网格(英文版)》是一部旨在为数学、物理、化学、气象学、流体和连续力学等众多领域的专家和学者介绍多重网格方法的教程。多重网格法在金融和经济学中也占据着越来越重要的地位,有读者认为这是多重网格法最好的书,没有之一,相信这样的评价是客观的。书中介绍了解决偏微分方程的多重网格法,和多重网格法的更高层次的最新研究以及在实践中的应用。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 多重网格(英文版) |
分类 | 科学技术-自然科学-数学 |
作者 | (德)特洛特贝格 |
出版社 | 世界图书出版公司 |
下载 | ![]() |
简介 | 编辑推荐 特洛特贝格编写的《多重网格(英文版)》是一部旨在为数学、物理、化学、气象学、流体和连续力学等众多领域的专家和学者介绍多重网格方法的教程。多重网格法在金融和经济学中也占据着越来越重要的地位,有读者认为这是多重网格法最好的书,没有之一,相信这样的评价是客观的。书中介绍了解决偏微分方程的多重网格法,和多重网格法的更高层次的最新研究以及在实践中的应用。 目录 Preface 1 IⅡtrOduction 1.1 Types ofPDEs 1.2 Grids and Discretization Approaches 1.2.1 Grids 1.2.2 Discretization Approaches 1.3 Some Notation 1.3.1 Continuous Boundary Value Problems l.3.2 Discrete Boundary Value Problems 1.3.3 Inner Products and NOrlTIS 1.3.4 Stencil Notation 1.4 Poisson’s Equation and Model Problem 1 1.4.1 Matrix Terminology 1.4.2 Poisson Solvers 1.5 A First Glance at Multigrid 1.5.1 The Two Ingredients ofMultigrid 1.5.2 High and Low Frequencies,and Coarse Meshes 1.5.3 From Two Grids to Multigrid 1.5.4 Multigrid Features 1.5.5 Multigrid History 1.6 Intermezzo:Some Basic Facts and Methods 1.6.1 Iterative Solvers.Splittings and Preconditioners 2 Basic Multigrid I 2.1 Error Smoothing Procedures 2.1.1 Jacobi.type Iteration(Relaxation) 2.1.2 Smoothing Properties of山一Jacobi Relaxation 2.1.3 Gauss.Seidel.type Iteration(Relaxation) 2.1.4 Parallel Properties of Smoothers 2.2 Introducing the Two.grid Cycle 2.2.1 Iteration by Approximate Solution ofthe Defect Equation 2.2.2 Coarse Grid Correction 2.2.3 Structure ofthe Two—grid Operator 2.3 Multigrid Components 2.3.1 Choices of Coarse Grids 2.3.2 Choice of the Coarse Grid Operator 2.3.3 Transfer Operators:Restriction 2.3.4 Transfer Operators:Interpolation 2.4 The Multigrid Cycle 2.4.1 Sequences of Grids and Operators 2.4.2 Recursive Definition 2.4.3 Computational W.0rk 2.5 Multigrid Convergence and E币ciency 2.5.1 An Efficient 2D Multigrid Poisson Solver 2.5.2 How to Measure the Multigrid Convergence Factor in Practice 2.5.3 Numerical E伍ciency 2.6 Full Multigrid 2.6.1 Structure of Full Multigrid 2.6.2 Computational W10rk 2.6.3 FMG for Poisson’S Equation 2.7 Further Remarks on Transfer Operators 2.8 First Generalizations 2.8.1 2D Poisson—like Difrerential Equations 2.8.2 Time.dependent Problems 2.8.3 Cartesian Grids in Nonrectangular Domains 2.8.4 Multigrid Components for Cell.centered Discretizations 2.9 Multigridin 3D 2.9.1 TIle 3D Poisson Problem 2.9.2 3D Multigrid Components 2.9.3 Computational WOrk in 3D 3 Elementary Multigrid Theory 3.1 Survey 3.2 Why it iS Su伍cient tO Derive Two.grid Convergence Factors 3.2.1 Independent Convergence of Multigrid 3.2.2 A 111eoretical Estimate for Full Multigrid 3.3 How to Derive Two—grid Convergence Factors by Rigorous Fourier Analysis 3.3.1 Asymptotic Two.grid Convergence. 3.3.2 Norms ofthe Two—grid Operator 3.3.3 Results for Multigrid 3.3.4 Essential Steps and Details of the Two.grid Analysis 3.4 Range of Applicability of the Rigorous Fourier Analysis,Other Approaches 3.4.1 The 3D Case …… 4 Local Fourier Analysis 5 Basic Multigrid II 6 ParalleI Multigrid in Practice 7 More Advanced Multigrid 8 Multigrid for Systems of Equations 9 Adaptive Muitigrid 10 Some More Multigrid Applications ADDendixes |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。