网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 理论物理中的Mathematica--电动力学量子力学广义相对论和分形(第2版影印版)(精)/国外物理名著系列
分类 科学技术-自然科学-物理
作者 (美)鲍曼
出版社 科学出版社
下载
简介
编辑推荐

《理论物理中的Mathematica——电动力学量子力学广义相对论和分形(第2版影印版)》是Springer2005年出版的一卷本“经典力学和非线性动力学”的新版,作者是G.Baumann。本书是经典力学和非线性动力学的经典教材,它教授读者如何应用Mathematica以数字和符号的方式处理物理问题中的理论概念并求解。书中给出许多具有启发性的实例让读者学习和实际运用那些导出的常数和公式。本书新版扩充为两卷标准形式,适合于力学和电动力学课程,增加了许多新实例,更有益于启发性的学习环境。所附光盘只读存储器里包括所有课本的内容和应用Mathematica Notebooks求解物理问题的实例。

内容推荐

《理论物理中的Mathematica——电动力学量子力学广义相对论和分形(第2版影印版)》为国外物理名著系列之一,由鲍曼编著。

《理论物理中的Mathematica——电动力学量子力学广义相对论和分形(第2版影印版)》主要内容简介:Classical Mechanics and Nonlinear Dynamics Class-tested textbook that shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica~ to derive numeric and symbolic solutions. Delivers dozens of fully interactive examples for learning and implementation, constants and formulae can readily be altered and adapted for the user's purposes. New edition offers enlarged two-volume format suitable to courses in mechanics and electrodynamics, while offering dozens of new examples and a more rewarding interactive learning enwironment.

目录

Volume I

Preface

1 Introduction

 1.1  Basics

1.1.1 Structure of Mathematica

1.1.2 Interactive Use of Mathematica

1.1.3 Symbolic Calculations

1.1.4 Numerical Calculations

I.1.5 Graphics

1.1.6 Programming

2 Classical Mechanics

 2.1 Introduction

 2.2 Mathematical Tools

2.2.1 Introduction

2.2.2 Coordinates

2.2.3 Coordinate Transformations and Matrices

2.2.4 Scalars

2.2.5 Vectors

2.2.6 Tensors

2.2.7 Vector Products

2.2.8 Derivatives

2.2.9 Integrals

2.2.10 Exercises

 2.3  Kinematics

2.3.1 Introduction

2.3.2 Velocity

2.3.3 Acceleration

2.3.4 Kinematic Examples

2.3.5 Exercises

 2.4  Newtonian Mechanics

2.4.1 Introduction

2.4.2 Frame of Reference

2.4.3 Time

2.4.4 Mass

2.4.5 Newton's Laws

2.4.6 Forces in Nature

2.4.7 Conservation Laws

2.4.8 Application of Newton's Second Law

2.4.9 Exercises

2.4.10 Packages and Programs

 2.5 Central Forces

2.5.1 Introduction

2.5.2 Kepler's Laws

2.5.3 Central Field Motion

2.5.4 Two-Particle Collisons and Scattering

2.5.5 Exercises

2.5.6 Packages and Programs

 2.6 Calculus of Variations

2.6.1 Introduction

2.6.2 The Problem of Variations

2.6.3 Euler's Equation

2.6.4 Euler Operator

2.6.5 Algorithm Used in the Calculus of Variations

2.6.6 Euler Operator for q Dependent Variables

2.6.7 Euler Operator for q + p Dimensions

2.6.8 Variations with Constraints

2.6.9 Exercises

2.6.10 Packages and Programs

 2.7 Lagrange Dynamics

2.7.1 Introduction

2.7.2 Hamilton's Principle Hisorical Remarks

2.7.3 Hamilton's Principle

2.7.4 Symmetries and Conservation Laws

2.7.5 Exercises

2.7.6 Packages and Programs

 2.8 Hamiltonian Dynamics

2.8.1 Introduction

2.8.2 Legendre Transform

2.8.3 Hamilton's Equation of Motion

2.8.4 Hamilton's Equations and the Calculus of Variation

2.8.5 Liouville's Theorem

2.8.6 Poisson Brackets

2.8.7 Manifolds and Classes

2.8.8 Canonical Transformations

2.8.9 Generating Functions

2.8.10 Action Variables

2.8.11 Exercises

2.8.12 Packages and Programs

 2.9 Chaotic Systems

2.9.1 Introduction

2.9.2 Discrete Mappings and Hamiltonians

2.9.3 Lyapunov Exponents

2.9.4 Exercises

 2.10 Rigid Body

2.10.1 Introduction

2.10.2 The Inertia Tensor

2.10.3 The Angular Momentum

2.10.4 Principal Axes of Inertia

2.10.5 Steiner's Theorem

2.10.6 Euler's Equations of Motion

2.10.7 Force-Free Motion of a Symmetrical Top

2.10.8 Motion of a Symmetrical Top in a Force Field

2.10.9 Exercises

2.10.10 Packages and Programms

3 Nonlinear Dynamics

 3.1 Introduction

 3.2 The Korteweg-de Vries Equation

 3.3 Solution of the Korteweg-de Vries Equation

3.3.1 The Inverse Scattering Transform

3.3.2 Soliton Solutions of the Korteweg-de Vries Equation

 3.4 Conservation Laws of the Korteweg--de Vries Equation

3.4.1 Definition of Conservation Laws

3.4.2 Derivation of Conservation Laws

 3.5 Numerical Solution of the Korteweg--de Vries Equation

 3.6 Exercises

 3.7 Packages and Programs

3.7.1 Solution of the KdV Equation

3.7.2 Conservation Laws for the KdV Equation

3.7.3 Numerical Solution of the KdV Equation

 References

 Index

Volume II

Preface

4  Electrodynamics

 4.1 Introduction

 4.2 Potential and Electric Field of Discrete Charge Distributions

 4.3 Boundary Problem of Electrostatics

 4.4 Two Ions in the Penning Trap

4.4.1 The Center of Mass Motion

4.4.2 Relative Motion of the Ions

 4.5  Exercises

 4.6  Packages and Programs

4.6.1 Point Charges

4.6.2 Boundary Problem

4.6.3 Penning Trap

5 Quantum Mechanics

 5.1 Introduction

 5.2 The Schr6dinger Equation

 5.3 One-Dimensional Potential

 5.4 The Harmonic Oscillator

 5.5 Anharmonic Oscillator

 5.6 Motion in the Central Force Field

 5.7 Second Virial Coefficient and Its Quantum Corrections

5.7.1 The SVC and Its Relation to ThermodynamicProperties

5.7.2 Calculation of the Classical SVC Be(T) for the(2 n - n) -Potential

5.7.3 Quantum Mechanical Corrections Bqt(T) andBq2 (T) of the SVC

5.7.4 Shape Dependence of the Boyle Temperature

5.7.5 The High-Temperature Partition Function for Diatomic Molecules

 5.8 Exercises

 5.9 Packages and Programs

5.9.1 QuantumWell

5.9.2 HarmonicOscillator

5.9.3 AnharmonicOsciilator

5.9.4 CentralField

6 General Relativity

 6.1 Introduction

 6.2 The Orbits in General Relativity

6.2.1 Quasielliptic Orbits

6.2.2 Asymptotic Circles

 6.3 Light Bending in the Gravitational Field

 6.4 Einstein's Field Equations (Vacuum Case)

6.4.1 Examples for Metric Tensors

6.4.2 The Christoffel Symbols

6.4.3 The Riemann Tensor

6.4.4 Einstein's Field Equations

6.4.5 The Cartesian Space

6.4.6 Cartesian Space in Cylindrical Coordinates

6.4.7 Euclidean Space in Polar Coordinates

 6.5 The Schwarzschild Solution

6.5.1 The Schwarzschild Metric in Eddington-Finkelstein Form

6.5.2 Dingle's Metric

6.5.3 Schwarzschild Metric in Kruskal Coordinates

 6.6  The Reissner-Nordstrom Solution for a Charged Mass Point

 6.7  Exercises

 6.8  Packages and Programs

6.8.1 EulerLagrange Equations

6.8.2 PerihelionShift

6.8.3 LightBending

7 Fractals

 7.1 Introduction

 7.2 Measuring a Borderline

7.2.1 Box Counting

 7.3 The Koch Curve

 7.4 Multifractals

7.4.1 Multifractals with Common Scaling Factor

 7.5 The Renormlization Group

 7.6 Fractional Calculus

7.6.1 Historical Remarks on Fractional Calculus

7.6.2 The Riemann-Liouville Calculus

7.6.3 Mellin Transforms

7.6.4 Fractional Differential Equations

 7.7 Exercises

 7.8 Packages and Programs

7.8.1 Tree Generation

7.8.2 Koch Curves

7.8.3 Multifactals

7.8.4 Renormalization

7.8.5 Fractional Calculus

Appendix

 A.1 Program Installation

 A.2 Glossary of Files and Functions

 A.3 Mathematica Functions

References

Index

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/4/13 23:16:01