《半导体光学和输运现象(影印版)》是一本半导体物理方面的教科书,属于Springer的Advanced Texts in Physics书系,2002年出版。假定读者已有固体物理学的基础知识,作者舍费尔全面介绍了半导体光学和输运现象领域的基本理论和理论在半导体激光器,半导体探测器,电光调制器,单电子晶体管,微腔和双垒共振隧道二极管等方面的应用。书中有一百多个习题和解法,以帮助读者深入理解本书的内容。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 半导体光学和输运现象(影印版)(精)/国外物理名著系列 |
分类 | 科学技术-自然科学-物理 |
作者 | (美)舍费尔 |
出版社 | 科学出版社 |
下载 | ![]() |
简介 | 编辑推荐 《半导体光学和输运现象(影印版)》是一本半导体物理方面的教科书,属于Springer的Advanced Texts in Physics书系,2002年出版。假定读者已有固体物理学的基础知识,作者舍费尔全面介绍了半导体光学和输运现象领域的基本理论和理论在半导体激光器,半导体探测器,电光调制器,单电子晶体管,微腔和双垒共振隧道二极管等方面的应用。书中有一百多个习题和解法,以帮助读者深入理解本书的内容。 内容推荐 《半导体光学和输运现象(影印版)》为国外物理名著系列之一,由舍费尔编著。 《半导体光学和输运现象(影印版)》主要内容简介:Well-balanced and up-to-date introduction to the field of semiconductor optics, including transport phenomena in semiconductors. Starting with the theoretical fundamentals of this field the book develops, assuming a basic knowledge of solid-state physics. The application areas of the theory covered include semiconductor lasers, detectors, electro-optic modulators, single-electron transistors, microcavities and double-barrier resonant tunneling diodes. One hundred problems with hints for solution help the readers to deepen their knowledge. 目录 1.Some Basic Facts on Semiconductors 1.1 Semiconductor Heterostructures 1.2 Doped and Modulation-Doped Semiconductors 2.Interaction of Matter and Electromagnetic Fields 2.1 Microscopic Maxwell Equations 2.2 The Many-Particle Hamiltonian 2.3 Second Quantization for Particles 2.4 Quantization of Electromagnetic Fields 2.4.1 Coherent States 2.5 The Interaction Hamiltonian of Fields and Particles 2.6 Macroscopic Maxwell Equations and Response Functions 2.6.1 Direct Calculation of Induced Charges and Currents 2.6.2 Phenomenological Theory of Linear Response 2.6.3 Time-Dependent Perturbation Theory 2.6.4 Longitudinal Response Functions 2.6.5 Transverse Response Functions 2.7 Measurable Quantities in Optics 2.7.1 Linear Optical Susceptibility and Macroscopic Polarization 2.7.2 Absorption Coefficient 2.8 Problems 3.One-Particle Properties 3.1 Hartree-Fock Theory for Zero Temperature 3.2 Hartree-Fock Theory for Finite Temperature 3.3 Band Structure and Ground-State Properties 3.3.1 The Local-Density Approximation 3.3.2 Lattice Periodicity 3.4 The Effective-Mass Approximation 3.5 kp Perturbation Theory for Degenerate Bands 3.6 Transition Matrix Elements 3.7 Density of States 3.8 Position of the Chemical Potential 3.9 Problems 4.Uncorrelated Optical Transitions 4.1 The Optical Bloch Equations 4.2 Linear Optical Properties 4.3 Nonlinear Optical Properties 4.3.1 Perturbation Analysis in the Frequency Domain 4.3.2 Introducing the Bloch Vector 4.3.3 Perturbation Analysis in the Time Domain 4.3.4 Alternative Approaches 4.4 Semiconductor Photodetectors 4.4.1 The Field-Field Correlation Function and its Relation to Coherence 4.5 Problems 5.Correlated Transitions of Bloch Electrons 5.1 Equations of Motion in the Hartree-Fock Approximation 5.2 Linear Optical Properties:The Continuum of Interband Transitions 5.2.1 The Bethe-Salpeter Equation 5.2.2 The Dielectric Function 5.3 Solution by Continued Fractions 5.4 Problems 6.Correlated Transitions near the Band Edge 6.1 The Semiconductor Bloch Equations 6.2 Linear Optical Properties: Bound Electron-Hole Pairs 6.2.1 The Coulomb Green's Function 6.2.2 Optical Properties due to Bound Electron-Hole Pairs 6.2.3 Numerical Methods 6.2.4 Excitons in Quantum Wells 6.2.5 Propagation of Light: Polaritons and Cavity Polaritons 6.3 Nonlinear Optical Properties 6.3.1 The Local-Field Approximation 6.3.2 Numerical Solutions 6.4 Problems 7.Influence of Static Magnetic Fields 7.1 One-Particle Properties 7.1.1 Effective Mass Theory for Isolated Bands 7.1.2 Degenerate Bloch Electrons in a Magnetic Field 7.1.3 One-Particle States in Quantum Wells 7.2 Optical Properties of Magneto-Excitons 7.2.1 Evaluation of the Coulomb Matrix Element 7.2.2 Linear Optical Properties 7.2.3 Semiconductor Bloch Equations in Two and Three Dimensions 7.2.4 Bose Condensation of Magnetoexcitons in Two Dimensions 7.2.5 Nonlinear Absorption of Magnetoexcitons in Quantum Wells 7.3 Problems 8.Influence of Static Electric Fields 8.1 Introduction 8.2 Uncorrelated Optical Transitions in Uniform Electric Fields 8.2.1 Optical Absorption 8.3 Correlated Optical Transitions in Uniform Electric Fields 8.3.1 An Analytical Model 8.3.2 Representation in Parabolic Coordinates 8.4 Quantum Wells in Electric Fields 8.5 Superlattices in Electric Fields 8.5.1 One-Particle States in Superlattices 8.5.2 Semiconductor Bloch Equations 8.6 Problems 9.Biexcitons 9.1 Truncation of the Many-Particle Problem in Coherently Driven Systems 9.1.1 Decomposition of Expectation Values 9.2 Equations of Motion in the Coherent Limit 9.2.1 Variational Methods 9.2.2 Eigenfunction Expansion 9.3 Bound-State and Scattering Contributions 9.3.1 Separation of Bound States 9.3.2 Biexcitonic Scattering Contributions 9.4 Signatures of Biexcitonic Bound States 9.4.1 Nonlinear Absorption 9.4.2 Four-Wave Mixing 9.5 Problems 10.Nonequilibrium Green's Functions 10.1 Time Evolution under the Action of External Fields 10.2 Definitions of One-Particle Green's Functions 10.3 Equations of Motion of One-Particle Green's Functions 10.4 Screened Interaction, Polarization, and Vertex Function 10.5 Quantum Kinetic Equations 10.5.1 The Two-Time Formalism 10.5.2 Reduction of Propagators to Single Time Functions 10.6 The Self-Energy in Different Approximations 10.6.1 Ground-State Energy 10.6.2 The Screened Hartree-Fock Approximation 10.7 The Screened Interaction 10.7.1 Separation of the Intraband and the Interband Susceptibility 10.7.2 The Screened Interaction in Random Phase Appproximation 10.8 The Second-Order Born Approximation 10.9 Problems 11.The Electron-Phonon Interaction 11.1 The Phonon-Induced Interaction 11.2 The Phonon Green's Function 11.2.1 Eigenmodes of Lattice Vibrations 11.2.2 Green's Function Representation of the Density-Density Correlation Function 11.3 Electron-Phonon Coupling in the Long-Wavelength Limit 11.3.1 Coupling to Longitudinal Optical Phonons 11.3.2 Coupling to Acoustic Phonons 11.4 The Phonon Self-Energy 11.4.1 The Polaron 11.4.2 Dephasing Induced by Phonons 11.5 Nonequilibrium Phonons 11.5.1 Renormalization of Phonons 11.5.2 Kinetic Equation for the Phonon Green's Function 11.6 Problems 12.Scattering and Screening Processes 12.1 Carrier-Phonon Scattering 12.1.1 Luminescence Spectra 12.1.2 Four-Wave-Mixing Experiments 12.1.3 Nonequilibrium Phonons 12.2 Carrier-Carrier Scattering 12.2.1 The Limit of Quasi-Equilibrium 12.3 Scattering in the Presence of Bound States 12.3.1 Exciton-Phonon Scattering 12.3.2 Exciton-Exciton versus Exciton-Electron Scattering 12.4 Problems 13.The Semiconductor Laser 13.1 Introduction 13.2 Semiclassical Approach 13.2.1 The Semiconductor Bloch Equations in a Cavity 13.2.2 The Standard Rate Equations 13.2.3 Extended Rate Equations 13.2.4 Spectral Hole-Burning 13.3 Quantum Theory 13.3.1 The Photon Kinetics 13.3.2 The Carrier Kinetics 13.3.3 The Semiconductor Laser Linewidth 13.4 Problems 14.Classical Transport 14.1 Transport Coefficients (Without Magnetic Field) 14.1.1 Electrical Conductivity 14.1.2 Peltier Coefficient 14.1.3 Thermal Conductivity 14.2 Transport Coefficients (with Magnetic Field) 14.2.1 Hall Effect and Hall Resistance 14.3 Towards Ballistic Electrons:The Hot-Electron Transistor 14.4 Problems 15.Electric Fields in Mesoscopic Systems 15.1 Elementary Approach 15.1.1 Resonant Tunneling I 15.1.2 Quantized Conductance 15.1.3 Coulomb Blockade and the SET Transistor 15.2 Resonant Tunneling II 15.2.1 Boundary Conditions and Discretization 15.2.2 Scattering Contributions 15.2.3 Numerical Results 15.2.4 Time-Dependent Phenomena 15.3 Problems 16.Electric and Magnetic Fields in Mesoscopic Systems 16.1 The Integer Quantum Hall Effect 16.2 Edge Channels and the Landauer-Biittiker Multiprobe Formula 16.2.1 Edge Channels 16.3 Microscopic Derivation of the Landauer-Biittiker Formula 16.3.1 Linear Response Theory 16.3.2 The Multiprobe Landauer-Biittiker Formula 16.4 The Fractional Quantum Hall Effect 16.5 Magnetotransport Through Dot or Antidot-Lattices 16.6 Problems References Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。