前言
第1章 使用R语言
R与机器学习
第2章 数据分析
分析与验证
什么是数据
推断数据的类型
推断数据的含义
数值摘要表
均值、中位数、众数
分位数
标准差和方差
可视化分析数据
列相关的可视化
第3章 分类:垃圾过滤
非此即彼:二分类
漫谈条件概率
试写第一个贝叶斯垃圾分类器
第4章 排序:智能收件箱
次序未知时该如何排序
按优先级给邮件排序
实现一个智能收件箱
第5章 回归模型:预测网页访问量
回归模型简介
预测网页流量
定义相关性
第6章 正则化:文本回归
数据列之间的非线性关系:超越直线
避免过拟合的方法
文本回归
第7章 优化:密码破译
优化简介
岭回归
密码破译优化问题
第8章 PCA:构建股票市场指数
无监督学习
主成分分析
第9章 MDS:可视化地研究参议员相似性
基于相似性聚类
如何对美国参议员做聚类
第10章 kNN:推荐系统
k近邻算法
R语言程序包安装数据
第11章 分析社交图谱
社交网络分析
用黑客的方法研究Twitter的社交关系图数据
分析Twitter社交网络
第12章 模型比较
SVM:支持向量机
算法比较
参考文献