《偏微分方程(第1卷)》是一部两卷集的偏微分方程教材。多变量椭圆,抛物和双曲方程是研究的主要对象,解决了PDE和多变量方法之间的关系。第一卷中集中研究了流形上的积分和微分,泛函解析基础,映射的Brouwer度,广义解析函数和圆周同调这些议题,在这一卷中通过积分表示论解决偏微分方程问题,第二卷中讲述函数解析解法。书中各章的独立性较强,有一定偏微分方程基本知识的读者可以独立阅读各章。本书由索维尼著。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 偏微分方程(第1卷) |
分类 | 科学技术-自然科学-数学 |
作者 | (德)索维尼 |
出版社 | 世界图书出版公司 |
下载 | ![]() |
简介 | 编辑推荐 《偏微分方程(第1卷)》是一部两卷集的偏微分方程教材。多变量椭圆,抛物和双曲方程是研究的主要对象,解决了PDE和多变量方法之间的关系。第一卷中集中研究了流形上的积分和微分,泛函解析基础,映射的Brouwer度,广义解析函数和圆周同调这些议题,在这一卷中通过积分表示论解决偏微分方程问题,第二卷中讲述函数解析解法。书中各章的独立性较强,有一定偏微分方程基本知识的读者可以独立阅读各章。本书由索维尼著。 目录 1 Differentiation and Integration on Manifolds The Weierstrai Parameter-invariant integrals and differential forms The exterior derivative of differential forms The Stokes integral theorem for manifolds The integral theorems of Gauand Stokes Curvilinear integrals The lemma of Poincare Co-derivatives and the Laplace-Beltrami operator Some historical notices to chapter I 2 Foundations of Functional Analysis Daniell's integral with examples Extension of Daniell's integral to Lebesgue's integral Measurable sets Measurable functions Riemann's and Lebesgue's integral on rectangles Banach and Hilbert spaces The Lebesgue spaces LP(X) Bounded linear functionals on LP(X) and weak convergence . Some historical notices to chapter II 3 Brouwer's Degree of Mapping with Geometric Applications The winding number The degree of mapping in Rn Geometric existence theorems The index of a mapping The product theorem Theorems of Jordan-Brouwer 4 Generalized Analytic Functions The Cauchy-Riemann differential equation Holomorphic functions in Cn Geometric behavior of holomorphic functions in C Isolated singularities and the general residue theorem The inhomogeneous Cauchy-Riemann differential equation Pseudoholomorphic functions Conformal mappings Boundary behavior of conformal mappings Some historical notices to chapter IV 5 Potential Theory and Spherical Harmonics Poisson's differential equation in Rn Poisson's integral formula with applications Dirichlet's problem for the Laplace equation in Rn Theory of spherical harmonics: Fourier series Theory of spherical harmonics in n variables 6 Linear Partial Differential Equations in Rn The maximum principle for elliptic differential equations Quasilinear elliptic differential equations The heat equation Characteristic surfaces The wave equation in Rn for n = 1, 3, 2 The wave equation in Rn for n _> 2 The inhomogeneous wave equation and an initial-boundary- value problem Classification, transformation and reduction of partial differential equations Some historical notices to the chapters V and VI References Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。