《经典傅里叶分析(第2版)》旨在为读者提供学习欧几里得调和解析领域的理论基础。原始版本是以单卷集发布的,但是由于其体积、范围和新材料的增加,第二版改为两卷集发行。目前的这个版本包括了新的一章讲述时频分析和Carleson-Hunt定理。第一卷包括一些基础经典话题,包括插值、傅里叶级数、傅里叶变换、极大值函数、奇异积分和Littlewood-Paley定理。第二卷包括更多现代话题,如函数空间、原子分解、非卷积型的奇异积分和权重不等式。本书由格拉法克斯著。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 经典傅里叶分析(第2版) |
分类 | 科学技术-自然科学-数学 |
作者 | (美)格拉法克斯 |
出版社 | 世界图书出版公司 |
下载 | ![]() |
简介 | 编辑推荐 《经典傅里叶分析(第2版)》旨在为读者提供学习欧几里得调和解析领域的理论基础。原始版本是以单卷集发布的,但是由于其体积、范围和新材料的增加,第二版改为两卷集发行。目前的这个版本包括了新的一章讲述时频分析和Carleson-Hunt定理。第一卷包括一些基础经典话题,包括插值、傅里叶级数、傅里叶变换、极大值函数、奇异积分和Littlewood-Paley定理。第二卷包括更多现代话题,如函数空间、原子分解、非卷积型的奇异积分和权重不等式。本书由格拉法克斯著。 目录 lp spaces and interpolation 1.1 lp and weak lp 1.2 convolution and approximate identifies 1.3 interpolation 1.4 lorentz spaces 2 maximal functions, fourier transform, and distributions 2.1 maximal functions 2.2 the schwartz class and the fourier transform 2.3 the class of tempered distributions 2.4 more about distributions and the fourier transform 2.5 convolution operators on lp spaces and multipliers 2.6 oscillatory integrals 3 fourier analysis on the torus 3.1 fourier coefficients 3.2 decay of fourier coefficients 3.3 pointwise convergence of fourier series 3.4 divergence of fourier and bochner-riesz summability 3.5 the conjugate function and convergence in norm 3.6 multipliers, transference, and almost everywhere convergence .3.7 lacunary series 4 singular integrals of convolution type 4.1 the hilbert transform and the riesz transforms 4.2 homogeneous singular integrals and the method of rotations. 4.3 the calder6n-zygmund decomposition and singular integrals 4.4 sufficient conditions for/f boundedness 4.5 vector-valued inequalities 4.6 vector-valued singular integrals 5 littlewood-paley theory and multipliers 5.1 littlewood-paley theory 5.2 two multiplier theorems 5.3 applications of littlewood-paley theory 5.4 the haar system, conditional expectation, and martingales 5.5 the spherical maximal function 5.6 wavelets a gamma and beta functions a.1 a useful formula a.2 definitions off(z) and b(z,w) a.3 volume of the unit ball and surface of the unit sphere a.4 computation of integrals using gamma functions a.5 meromorphic extensions of b(z, w) and f(z) a.6 asymptotics ofγ(x) as x →∞. a.7 euler's limit formula for the gamma function a.8 reflection and duplication formulas for the gamma function b bessel functions b.1 definition b.2 some basic properties b.3 an interesting identity b.4 the fourier transform of surface measure on sn-1 b.5 the fourier transform of a radial function on rn b.6 bessel functions of small arguments b.7 bessel functions of large arguments b.8 asymptotics of bessel functions c rademacher functions c.1 definition of the rademacher functions c.2 khintchine's inequalities c.3 derivation of khintchine's inequalities c.4 khintchine's inequalities for weak type spaces c.5 extension to several variables d spherical coordinates d.1 spherical coordinate formula d.2 a useful change of variables formula d.3 computation of an integral over the sphere d.4 the computation of another integral over the sphere d.5 integration over a general surface d.6 the stereographic projection e some trigonometric identities and inequalities f summation by parts g basic functional analysis h the minimax lemma the schur lemma 1.1 the classical schur lemma 1.2 schur's lenuna for positive operators 1.3 an example j the whitney decomposition of open sets in rn k smoothness and vauinhing moments k.1 the case of no cancellation k.2 the case of cancellation k.3 the case of three factors glossary references index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。