阿夫肯著的《物理学家用的数学方法(第7版)(精)》是为具有研究生水平的读者编写的一部入门性工具书,语言简练,结构流畅,可读性很强,很受读者欢迎,本书是第7版。本版全面介绍了物理学中常用数学方法,内容涉及物理学中用到的数学内容,包括矢量/张量分析,矩阵,群论,数列与复变函数,各种特殊函数,微分方程,傅里叶分析与积分变换,非线性方法,变分法和概率论等诸多领域,是从事物理学研究和教学人员的案头必备书。
读者对象:物理、数学及相关专业的研究生和科教工作者。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 物理学家用的数学方法(第7版)(精) |
分类 | 科学技术-自然科学-物理 |
作者 | (英)阿夫肯 |
出版社 | 世界图书出版公司 |
下载 | ![]() |
简介 | 编辑推荐 阿夫肯著的《物理学家用的数学方法(第7版)(精)》是为具有研究生水平的读者编写的一部入门性工具书,语言简练,结构流畅,可读性很强,很受读者欢迎,本书是第7版。本版全面介绍了物理学中常用数学方法,内容涉及物理学中用到的数学内容,包括矢量/张量分析,矩阵,群论,数列与复变函数,各种特殊函数,微分方程,傅里叶分析与积分变换,非线性方法,变分法和概率论等诸多领域,是从事物理学研究和教学人员的案头必备书。 读者对象:物理、数学及相关专业的研究生和科教工作者。 目录 Preface 1 Mathematical Preliminaries 1.1 InfiniteSeries 1.2 Series ofFunctions 1.3 Binomial Theorem 1.4 Mathematical Induction 1.5 Operations on Series Expansions of Functions 1.6 Some Important Series 1.7 Vectors 1.8 Complex Numbers and Functions 1.9 Derivatives andExtrema 1.10 Evaluation oflntegrals 1.1 I Dirac Delta Function AdditionaIReadings 2 Determinants and Matrices 2.1 Determinants 2.2 Matrices AdditionaI Readings 3 Vector Analysis 3.1 Review ofBasic Properties 3.2 Vectors in 3-D Space 3.3 Coordinate Transformations 3.4 Rotations in IR3 3.5 Differential Vector Operators 3.6 Differential Vector Operators: Further Properties 3.7 Vectorlntegration 3.8 Integral Theorems 3.9 PotentiaITheory 3.10 Curvilinear Coordinates AdditionaIReadings 4 Tensors and Differential Forms 4.1 TensorAnalysis 4.2 Pseudotensors, Dual Tensors 4.3 Tensors in General Coordinates 4.4 Jacobians 4.5 DifferentialForms 4.6 DifferentiatingForms 4.7 IntegratingForms AdditionalReadings 5 Vector Spaces 5.1 Vectors in Function Spaces 5.2 Gram-Schmidt Orthogonalization 5.3 Operators 5.4 SelfAdjointOperators 5.5 Unitaty Operators 5.6 Transformations of Operators 5.7 Invariants 5.8 Summary-Vector Space Notation AdditionaIReadings 6 Eigenvalue Problems 6.1 EigenvalueEquations 6.2 Matrix Eigenvalue Problems 6.3 Hermitian Eigenvalue Problems 6.4 Hermitian Matrix Diagonalization 6.5 NormaIMatrices AdditionalReadings 7 Ordinary DifTerential Equations 7.1 Introduction 7.2 First-OrderEquations 7.3 ODEs with Constant Coefficients 7.4 Second-Order Linear ODEs 7.5 Series Solutions-Frobenius ' Method 7.6 OtherSolutions 7.7 Inhomogeneous Linear ODEs 7.8 Nonlinear Differential Equations Additional Readings 8 Sturm-Liouville Theory 8.1 Introduction 8.2 Hermitian Operators 8.3 ODE Eigenvalue Problems 8.4 Variation Method 8.5 Summary, Eigenvalue Problems Additional Readings 9 Partial Differential Equations 9.1 Introduction 9.2 First-Order Equations 9.3 Second-Order Equations 9.4 Separation of Variables 9.5 Laplace and Poisson Equations 9.6 Wave Equation 9.7 Heat-Flow, or Diffusion PDE 9.8 Summary Additional Readings 10 Green's Functions 10.1 One-Dimensional Problems 10.2 Problems in Two and Three Dimensions Additional Readings 11 Complex Variable Theory 11.1 Complex Variables and Functions 11.2 Cauchy-Riemann Conditions 11.3 Cauchy' s Integral Theorem 11.4 Cauchy' s Integral Formula 11.5 Laurent Expansion 11.6 Singularities 11.7 Calculus of Residues 11.8 Evaluation of Definite Integrals 11.9 Evaluation of Sums 11.10 Miscellaneous Topics Additional Readings 12 Further Topics in Analysis 12.1 Orthogonal Polynomials 12.2 Bernoulli Numbers 12.3 Euler-Maclaurin Integration Formula 12.4 Dirichlet Series 12.5 Infinite Products 12.6 Asymptotic Series 12.7 Method of Steepest Descents 12.8 Dispersion Relations Additional Readings 13 Gamma Function 13.1 Definitions, Properties 13.2 Digamma and Polygamma Functions 13.3 The Beta Function 13.4 Stirling's Series 13.5 Riemann Zeta Function 13.6 Other Related Functions Additional Readings 14 Bessel Functions 14.1 Bessel Functions of the First Kind, ,Iv (x) 14.2 Orthogonality 14.3 Neumann Functions, Bessel Functions of the Second Kind 14.4 Hankel Functions 14.5 Modified Bessel Functions, Iv (x) and Kv (x) 14.6 Asymptotic Expansions 14.7 Spherical Bessel Functions Additional Readings 15 Legendre Functions 15.1 Legendre Polynomials 15.2 Orthogonality 15.3 Physical Interpretation of Generating Function 15.4 Associated Legendre Equation 15.5 Spherical Harmonics 15.6 Legendre Functions of the Second Kind Additional Readings 16 Angular Momentum 16.1 Angular Momentum Operators 16.2 Angular Momentum Coupling 16.3 Spherical Tensors 16.4 Vector Spherical Harmonics Additional Readings 17 Group Theory 17.1 Introduction to Group Theory 17.2 Representation of Groups 17.3 Symmetry and Physics 17.4 Discrete Groups 17.5 Direct Products 17.6 Symmetric Group 17.7 Continuous Groups 17.8 Lorentz Group 17.9 Lorentz Covariance of Maxwell's Equations 17.10 Space Groups Additional Readings 18 More Special Functions 18.1 Hermite Functions 18.2 Applications of Hermite Functions 18.3 Laguerre Functions 18.4 Chebyshev Polynomials 18.5 Hypergeometric Functions 18.6 Confluent Hypergeometric Functions 18.7 Dilogarithm 18.8 Elliptic Integrals Additional Readings 19 Fourier Series 19.1 General Properties 19.2 Applications of Fourier Series 19.3 Gibbs Phenomenon Additional Readings 20 Integral Transforms 20.1 Introduction 20.2 Fourier Transform 20.3 Properties of Fourier Transforms 20.4 Fourier Convolution Theorem 20.5 Signal-Processing Applications 20.6 Discrete Fourier Transform 20.7 Laplace Transforms 20.8 Properties of Laplace Transforms 20.9 Laplace Convolution Theorem 20.10 Inverse Laplace Transform Additional Readings 21 Integral Equations 21.1 Introduction 21.2 Some Special Methods 21.3 Neumann Series 21.4 Hilbert-Schmidt Theory Additional Readings 17.4 Discrete Groups 17.5 Direct Products 17.6 Symmetric Group 17.7 Continuous Groups 17.8 Lorentz Group 17.9 Lorentz Covariance of Maxwell's Equations 17.10 Space Groups Additional Readings 18 More Special Functions 18.1 Hermite Functions 18.2 Applications of Hermite Functions 18.3 Laguerre Functions 18.4 Chebyshev Polynomials 18.5 Hypergeometric Functions 18.6 Confluent Hypergeometric Functions 18.7 Dilogarithm 18.8 Elliptic Integrals Additional Readings 19 Fourier Series 19.1 General Properties 19.2 Applications of Fourier Series 19.3 Gibbs Phenomenon Additional Readings 20 Integral Transforms 20.1 Introduction 20.2 Fourier Transform 20.3 Properties of Fourier Transforms 20.4 Fourier Convolution Theorem 20.5 Signal-Processing Applications 20.6 Discrete Fourier Transform 20.7 Laplace Transforms 20.8 Properties of Laplace Transforms 20.9 Laplace Convolution Theorem 20.10 Inverse Laplace Transform Additional Readings 21 Integral Equations 21.1 Introduction 21.2 Some Special Methods 21.3 Neumann Series 21.4 Hilbert-Schmidt Theory Additional Readings 22 Calculus of Variations 22.1 Euler Equation 22.2 More General Variations 22.3 Constrained Minima/Maxima 22.4 Variation with Constraints Additional Readings 23 Probability and Statistics 23.1 Probability: Definitions, Simple Properties 23.2 Random Variables 23.3 Binomial Distribution 23.4 Poisson Distribution 23.5 Gauss' Normal Distribution 23.6 Transformations of Random Variables 23.7 Statistics Additional Readings Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。