网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 卫星动力学中的倾角函数
分类 科学技术-自然科学-数学
作者 Wu Lianda//Wang Hongbo//Ma Jingyuan
出版社 科学出版社
下载
简介
编辑推荐

Wu Lianda、Wang Hongbo、Ma Jingyuan主编的《卫星动力学中的倾角函数》内容介绍:Inclination function is a kind of special function commonly-used in thesatellite dynamics. With the technical development and intensive study, theorder of inclination function to be calculated becomes higher and higher.For the high-precision computation of inclination function, this bookletintroduced the available methods, put forward new methods, gave theirFORTRAN program, and studied their stability.

This booklet can be used as a reference for scholars of astronomy and earthscience, and can be also used as a textbook of the graduates.

目录

 Preface

1 Introduction

 1.1 Introduction of inclination function

 1.2 Other definitionsofIncFun

 1.3 Requirements of satellite dynamics for lncFun

 1.3.1 Normalized IncFun and its derivatives

 1.3.2 Kernel oflncFun

 1.3.3 Calculating order and storage of lncFun

 1.4 About this book

2 Expressions of lncFun and its derivative

 2.1 Frequentlyused notations oflncFun

 2.1.1 Normalized lncFun'

 2.1.2 Quasinormalized IncFun

 2.1.3 Kernel of lncFun

 2.1.4 Gooding's notation

 2.1.5 Emeljanov's notation

 2.2 Series expressions oflncFun

 2.2.1 Single summation expression

 2.2.2 Dual summation expression

 2.2.3 Triple summation expression

 2.3 Definite integral expression oflncFun

 2.4 Jacobi polynomial expression oflncFun

 2.5 Hypergeometric series expression oflncFun

 2.5.1 Expressions in three areas

 2.5.2 Expression suited to areas A and B

 2.5.3 Unified hypergeometric series expression

 2.6 dfunction expression oflncFun

 2.6.1 dfunction expression

 2.6.2 Expression of inclination matrix element

 2.6.3 Timoshkova's expression

 2.6.4 Kinoshita's expression

 2.6.5 Comparison of four expressions

 2.7 Tisserand polynomial expression oflncFun

 2.8 Calculating method of the derivatives of IncFun

 2.8.1 The 1st method

 2.8.2 The 2nd method

 2.8.3 The 3rd method

 2.9 Primary properties oflncFun

3 Recnrsion of inclination function

 3.1 Classification ofrecursion

 3.1.1 Classification with special function used

 3.1.2 Classification with recursion index

 3.1.3 Classification with recursive function

 3.2 Starting values for recursion oflncFun

 3.2.1 Starting values for Lplane recursion

 3.2.2 Starting values for Mplane recursion

 3.3 Recursion using recursion relations of Legendre polynomial: Giacaglia's formulae

 3.3.1 The first set of formulae

 3.3.2 The second set of formulae

 3.3.3 The third set of formulae

 3.4 Recursion using recursion relations of Jacobi polynomial

 3.4.1 Primary recursion relations of Jacobi polynomial

 3.4.2 Several practical recursions

 3.4.3 Formulae of Allah's recursion

 3.4.4 Formulae ofGooding's recursion

 3.5 Recursion using recursion formula of hypergeometric series

 3.5.1  Important property of recursion formula

 3.5.2 Several practical rccursions

 3.6 Recursion using recursion formula oldfunction

 3.6.1 Blanco recursion

 3.6.2 Risbo recursion

 3.7 Stability analysis ofrecursion

 3.8 Preliminary analysis for algorithms with highprecision and highstability

 3.8.1 Difficulty of the Mk(l+) recursion

 3.8.2 Methods ofovercomingthis difficulty

4 Computation method of inclination function

 4.1 Analytical method

 4.1.1 For case mk<O

 4.1.2 For case mk>O

 4.1.3 Loss of precision of analytical method and its causes

 4.2 Definite integral method

 4.2.1 Outline of the method

 4.2.2 Computation method of normalized Lcgendre polynomials

 4.2.3 Selection of numerical integral formula

 4.3 KosteleckyWnuk's method

 4.4 Giacaglia's method

 4.5 Gooding's method

 4.6 Modified Gooding's method

 4.7 Emeljanov's method

 4.8 Modified Emeljanov's method

 4.9 Jacobi polynomial method

 4.10 dfunction method

 4.11 Lplane recursion method

5 Computation program

 5.1 Analytical method

 5.2 Definite integral method

 5.3 KosteleckyWnuk's method

 5.4 Giacaglia's method

 5.5 SimplifiedGoodingsmethod

 5.6 Modified Goodings meod

 5.7 Emeljanovs method

 5.8 Modified Emeljanovs method

 5.9 Jacobi polynomial method

 5.10 dfunctionmethod

 5.11 Lplane recursion method

6 Comparison and evaluation

 6.1 Computation accuracy

 6.1.1 Assessment standard and accuracy index

 6.1.2 Computation results ofthe accuracy index

 6.1.3 Comparisonindex

 6.1.4 Note about the treatment 0fs and c

 6.1.5 Precision ofthe derivatives oflncFun

 6.2 Computation speed

 6.3 Requirement to memo~

 6.4 Method selection for the computation of IncFun in satellite dynamics

 6.4.1 Method fbr computation without singularity

 6.4.2 Method ofdistinguishing large inclination from small inclination

 6.5 A quadprecision calculation test and prospects for future research

Reftrences

AppendixA Proofof series expressions ofinclination function

 A1 Single summation formula

 A2 DuaI summation formula

 A3 Kaulas triple summation formula

 A4 Analytical expression ofloworder inclination functions

Appendix B Contiguousfunction relations ofhypergeometric series

 B1 Gausss contiguous function relations

 B2 CFR needed for the recursion of ioclination function

 B3 CFR for m.recursion

 B4 CFR fnr/recursion

 B5 CFR forprecursion

Appendix C The quadprecision program for calculation of inclination function

 C1 The quadprecision program of Jacobi polynomial method

 C2 The quadprecision program of Lplane method

 Acknowledgements

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/4/22 4:46:22