1 Crystal Binding and Structure
1.1 Classification of Solids by Binding Forces(B)
1.1.1 Molecular Crystals and the van der Waals Forces(B)
1.1.2 Ionic Crystals and Born-Mayer Theory(B)
1.1.3 Metals and Wigner-Seitz Theory(B)
1.1.4 Valence Crystals and Heitler-London Theory(B)
1.1.5 Comment on Hydrogen-Bonded Crystals(B)
1.2 Group Theory and Crystallography
1.2.1 Definition and Simple Properties of Groups(AB)
1.2.2 Examples of Solid-State Symmetry Properties(B)
1.2.3 Theorem: No Five-fold Symmetry(B)
1.2.4 Some Crystal Structure Terms and Nonderived Facts(B)
1.2.5 List of Crystal Systems and Bravais Lattices(B)
1.2.6 Schoenflies and International Notation for Point Groups(A)
1.2.7 Some Typical Crystal Structures(B)
1.2.8 Miller Indices(B)
1.2.9 Bragg and yon Laue Diffraction(AB)
Problems
2 Lattice Vibrations and Thermal Properties
2.1 The Born--Oppenheimer Approximation(A)
2.2 One-Dimensional Lattices(B)
2.2.1 Classical Two-Atom Lattice with Periodic Boundary Conditions(B)
2.2.2 Classical,Large,Perfect Monatomic Lattice,and Introduction to Brillouin Zones(B)
2.2.3 Specific Heat of Linear Lattice(B) 7
2.2.4 Classical Diatomic Lattices: Optic and Acoustic Modes(B)
2.2.5 Classical Lattice with Defects(B)
2.2.6 Quantum-Mechanical Linear Lattice(B)
2.3 Three-Dimensional Lattices
2.3.1 Direct and Reciprocal Lattices and Pertinent Relations(B)
2.3.2 Quantum-Mechanical Treatment and Classical Calculation of the Dispersion Relation(B)
2.3.3 The Debye Theory of Specific Heat(B)
2.3.4 Anharmonic Terms in The Potential The Gruneisen Parameter(A)
2.3.5 Wave Propagation in an Elastic Crystalline Continuum(MET,MS)
Problems
3 Electrons in Periodic Potentials
3.1 Reduction to One-Electron Problem
3.1.1 The Variational Principle(B)
3.1.2 The Hartree Approximation(B)
3.1.3 The Hartreo--Fock Approximation(A)
3.1.4 Coulomb Correlations and the Many-Electron Problem(A)
3.1.5 Density Functional Approximation(A)
3.2 One-Electron Models
3.2.1 The Kronig-Penney Model(B)
3.2.2 The Free-Electron or Quasifree-Eleetron Approximation(B)
3.2.3 The Problem of One Electron in a Three-Dimensional Periodic Potential
3.2.4 Effect of Lattice Defects on Electronic States in Crystals(A)
Problems
4 The Interaction of Electrons,and Lattice Vibrations
4.1 Particles and Interactions of Solid-state Physics(B)
4.2 The PhOnon-Phonon Interaction(B)
4.2.1 Anharmonic Terms in the Hamiltonian(B)
4.2.2 Normal_and Umklapp Processes(B)
4.2.3 Comment on Thermal Conductivity(B)
4.3 The Eleetron-Phonon Interaction
4.3.1 Form oftheHamiltonian(B)
4.3.2 Rigid-lon Approximation(B)
4.3.3 The Polaron as a Prototype Quasiparticle(A)
4.4 Brief Comments on Electron-Electron Interactions(B)
4.5 The Boltzmann Equation and Electrical Conductivity
4.5.1 Derivation of the Boltzmann Differential Equation(B)
4.5.2 Motivation for Solving the Boltzmann Differential Equation(B)
4.5.3 Scattering Processes and Q Details(B)
4.5.4 The Relaxation-Time Approximate Solution of the Boltzmann Equation for Metals(B)
4.6 Transport Coefficients
4.6.1 The Electrical Conductivity(B)
4.6.2 The Peltier Coefficient(B)
4.6.3 The Thermal Conductivity(B)
4.6.4 The Thermoelectric Power(B)
4.6.5 Kelvin's Theorem(B)
4.6.6 Transport and Material Properties in Composites(MET,MS)
Problems
5 Metals,Alloys,and the Fermi Surface
5.1 Fermi Surface(B)
5.1.1 Empty Lattice(B)
5.1.2 Exercises(B)
5.2 The Fermi Surface in Real Metals(B)
5.2.1 The Alkali Metals(B)
5.2.2 Hydrogen Metal(B)
5.2.3 The Alkaline Earth Metals(B)
5.2.4 The Noble Metals(B)
5.3 Experiments Related to the Fermi Surface(B)
5.4 The de Haas-van Alphen effect(B)
5.5 Eutectics(MS,ME)
5.6 Peierls Instability of Linear Metals(B)
5.6.1 Relation to Charge Density Waves(A)
5.6.2 Spin Density Waves(A)
5.7 Heavy Fermion Systems(A)
5.8 Electromigration(EE,MS)
5.9 White Dwarfs and Chandrasekhar's Limit(A)
5.9.1 Gravitational Self-Energy(A)
5.9.2 Idealized Model 0fa White Dwarf(A)
5.10 Some Famous Metals and Alloys(B,MET)
Problems
6 Semiconductors
6.1 Electron Motion
6. I. 1 Calculation of Electron and Hole Concentration(B)
6.1.2 Equation of Motion of Electrons in Energy Bands(B)
6.1.3 Concept of Hole Conduction(B)
6.1.4 Conductivity and Mobility in Semiconductors(B)
6.1.5 Drift of Carriers in Electric and Magnetic Fields:The Hall Effect(B)
6.1.6 Cyclotron Resonance(A)
6.2 Examples of Semiconductors
6.2.1 Models of Band Structure for Si,Ge and Ⅱ-Ⅵ and Ⅲ-Ⅴ Materials(A)
6.2.2 Comments about GaN(A)
6.3 Semiconductor Device Physics
6.3.1 Crystal Growth of Semiconductors(EE,MET,MS)
6.3.2 Gunn Effect(EE)
6.3.3 pn-Junctions(EE)
6.3.4 Depletion Width,Varactors,and Graded Junctions(EE)
6.3.5 Metal Semiconductor Junctions the Schottky Barrier(EE)
6.3.6 Semiconductor Surface States and Passivation(EE)
6.3.7 Surfaces Under Bias Voltage(EE)
6.3.8 lnhomogeneous Semiconductors Not in Equilibrium(EE)
6.3.9 Solar Cells(EE)
6.3.10 Transistors(EE)
6.3.11 Charge-Coupled Devices(CCD)(EE)
Problems
7 Magnetism,Magnons,and Magnetic Resonance
7.1 Types of Magnetism
7.1.1 Diamagnetism of the Core Electrons(B)
7.1.2 Paramagnetism of Valence Electrons(B)
7.1.3 Ordered Magnetic Systems(B)
7.2 Origin and Consequences of Magnetic Order
7.2.1 Heisenberg Hamiltonian
7.2.2 Magnetic Anisotropy and Magnetostatic Interactions(A)
7.2.3 Spin Waves and Magnons(B)
7.2.4 Band Ferromagnetism(B)
7.2.5 Magnetic Phase Transitions(A)
7.3 Magnetic Domains and Magnetic Materials(B)
7.3.1 Origin of Domains and General Comments(B)
7.3.2 Magnetic Materials(EE,MS)
7.4 Magnetic Resonance and Crystal Field Theory
7.4.1 Simple Ideas About Magnetic Resonance(B)
7.4.2 A Classical Picture of Resonance(B)
7.4.3 The Bloch Equations and Magnetic Resonance(B)
7.4.4 Crystal.Field Theory and Related Topics(B)
7.5 BriefMentionofOtherTopics
7.5.1 Spintronics or Magnetoelectronics(EE)
7.5.2 The Kondo Effect(A)
7.5.3 Spin Glass(A)
7.5.4 Solitons(A,EE)
Problems
8 Superconductivity
8.1 Introduction and Some Experiments(B)
8.1.1 Ultrasonic Attenuation(B)
8.1.2 Electron Tunneling(B)
8.1.3 Infrared Absorption(B)
8.1.4 Flux Quantization(B)
8.1.5 Nuclear Spin Relaxation(B)
8.1.6 Thermal Conductivity(B)
8.2 The London and Ginzburg-Landau Equations(B)
8.2.1 The Coherence Length(B)
8.2.2 Flux Quantization and Fluxoids(B)
8.2.3 Order of Magnitude for Coherence Length(B)
8.3 Tunneling(B,EE)
8.3.1 Single-Particle or Giaever Tunneling
8.3.2 Josephson Junction Tunneling
8.4 SQUID: Superconducting Quantum Interference(EE)
8.4.1 Questions and Answers(B)
8.5 The Theory of Superconductivity(A)
8.5.1 Assumed Second Quantized Hamiltonian for Electrons and Phonons in Interaction(A)
8.5.2 Elimination of Phonon Variables and Separation of Electron-Electron Attraction Term Due to Virtual Exchange of Phonons(A)
8.5.3 Cooper Pairs and the BCS Hamiltonian(A)
8.5.4 Remarks on the Nambu Formalism and Strong Coupling Superconductivity(A)
8.6 Magnesium Diboride(EE,MS,MET)
8.7 Heavy-Electron Superconductors(EE,MS,MET)
8.8 High-Temperature Superconductors(EE, MS,MET)
8.9 Summary Comments on Superconductivity(B)
Problems
9 Dielectrics and Ferroelectrics
9.1 The Four Types of Dielectric Behavior(B)
9.2 Electronic Polarization and the Dielectric Constant(B)
9.3 Ferroelectric Crystals(B)
9.3.1 Thermodynamics of Ferroelectricity by Landau Theory(B)
9.3.2 Further Comment on the Ferroelectric Transition(B,ME)
9.3.3 One-Dimensional Model of the Soft Mode of Ferroelectrie Transitions(A)
9.4 Dielectric Screening and Plasma Oscillations(B)
9.4.1 Helicons(EE)
9.4.2 Aifven Waves(EE)
9.5 Free-Electron Screening
9.5.1 Introduction(B)
9.5.2 The Thomas-Fermi and Debye--Huckei Methods(A,EE)
9.5.3 The Lindhard Theory of Screening(A)
Problems
10 Optical Properties of Solids
10.1 Introduction(B)
10.2 Macroscopic Properties(B)
10.2.1 Kronig-Kramers Relations(A)
10.3 Absorption of Electromagnetic Radiation-General(B)
10.4 Direct and Indirect Absorption Coefficients(B)
10.5 Oscillator Strengths and Sum Rules(A)
10.6 Critical Points and Joint Density of States(A)
10.7 Exeiton Absorption(A)
10.8 Imperfections(B,MS,MET)
10.9 Optical Properties of Metals(B,EE,MS)
10.10 Lattice Absorption,Restrahlen,and Polaritons(B)
10.10.1 General Results(A)
10.10.2 Summary of the Properties of ε(q,ω)(B)
10.10.3 Summary of Absorption Processes:General Equations(B)
10.11 Optical Emission,Optical Scattering and Photoemission(B)
10.11.1 Emission(B)
10.11.2 Einstein A and B Coefficients(B,EE,MS)
10.11.3 Raman and Brillouin Scattering(B,MS)
10.12 Magneto-Optic Effects: The Faraday Effect(B,EE,MS)
Problems
11 Defects in Solids
11.1 Summary About Important Defects(B)
11.2 Shallow and Deep Impurity Levels in Semiconductors(EE)
11.3 Effective Mass Theory,Shallow Defects,and Supedattices(A)
11.3.1 Envelope Functions(A)
11.3.2 First Approximatiun(A)
11.3.3 Second Approximation(A)
11.4 Color Centers(B)
11.5 Diffusion(MET,MS)
11.6 Edge and Screw Dislocation(MET,MS)
11.7 Thermionic Emission(B)
11.8 Cold-Field Emission(B)
11.9 Microgravity(MS)
Problems
12 Current Topics in Solid Condensed-Matter Physics
12.1 Surface Reconstruction(MET,MS)
12.2 Some Surface Characterization Techniques(MET,MS,EE)
12.3 Molecular Beam Epitaxy(MET,MS)
12.4 Heterostructures and Quantum Wells
12.5 Quantum Structures and Single-Electron Devices(EE)
12.5.1 Coulomb Blockade(EE)
12.5.2 Tunneling and the Landauer Equation(EE)
12.6 Superlattices,Bloch Oscillators,Stark-Wannier Ladders
12.6.1 Applications of Superlattices and Related Nanostructures(EE)
12.7 Classical and Quantum Hall Effect(A)
12.7.1 Classical Hall Effect- CHE(A)
12.7.2 The Quantum Mechanics of Electrons in a Magnetic Field: The Landau Gauge(A)
12.7.3 Quantum Hall Effect: General Comments(A)
12.8 Carbon-Nanotubes and Fullerene Nanotechnology(EE)
12.9 Amorphous Semiconductors and the Mobility Edge(EE)
12.9.1 Hopping Conductivity(EE)
12.10 Amorphous Magnets(MET,MS)
12.11 Soft Condensed Matter(MET,MS)
12.11.1 General Comments
12.11.2 Liquid Crystals(MET,MS)
12.11.3 Polymers and Rubbers(MET,MS)
Problems
Appendices
A Units
B Normal Coordinates
C Derivations of Bloch's Theorem
C.1 Simple One-Dimensional Derivation
C.2 Simple Derivation in Three Dimensions
C.3 Derivation of BIoch's Theorem by Group Theory
D Density Matrices and Thermodynamics
E Time-Dependent Perturbation Theory
F Derivation of The Spin-Orbit Term From Dirac's Equation
G The Second Quantization Notation for Fermions and Bosons
G.1 Bose Particles
G.2 Fermi Particles
H The Many=Body Problem
H.1 Propagators
H.2 Green Functions
H.3 Feynman Diagrams
H.4 Definitions
H.5 Diagrams and the Hartree and Hartree-Fock Approximations
H.6 The Dyson Equation
Bibliography
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Appendices
Subject References
Further Reading
Index