网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 固态物理学(第1卷)
分类 科学技术-自然科学-物理
作者 (美)帕特森
出版社 世界图书出版公司
下载
简介
编辑推荐

由帕特森编著的《固态物理学》是以作者1971年的教材为蓝本,增加了许多最新研究成果,内容几乎扩展为原来的两倍。全书共十二章,为了阅读方便,现分为上、下两卷,前六章为上册,后六章为下册。读者需有一定的物理和数学背景。固态物理学将物理领域的多个概念有机结合,用最基本的方法讲述固体材料是如何工作的。固态物理学也定义为从物理规律研究固体的物理性质。从某种意义上说,本学科与物理学别的分支不一样,更像是化学,研究材料的大量普通性质。本书对固态物理学的讲述也是从最基本的定义开始,层层递进,节节深入,符合读者的逻辑思维方式。每章末都附有习题,有助于读者更好的理解本章所学内容。目次;晶体键联和结构;晶格振动和热性质;周期势场中的电子;电子和晶格振动的相互作用;金属,铝和费米面;半导体;磁性,磁子和磁共振;超导;电介质和铁电体;固体的光学性质;固态中的亏量;固体凝聚态物理学中的最新议题;附录。

目录

1 Crystal Binding and Structure

 1.1 Classification of Solids by Binding Forces(B)

1.1.1 Molecular Crystals and the van der Waals Forces(B)

1.1.2 Ionic Crystals and Born-Mayer Theory(B)

1.1.3 Metals and Wigner-Seitz Theory(B)

1.1.4 Valence Crystals and Heitler-London Theory(B)

1.1.5 Comment on Hydrogen-Bonded Crystals(B)

 1.2 Group Theory and Crystallography

1.2.1 Definition and Simple Properties of Groups(AB)

1.2.2 Examples of Solid-State Symmetry Properties(B)

1.2.3 Theorem: No Five-fold Symmetry(B)

1.2.4 Some Crystal Structure Terms and Nonderived Facts(B)

1.2.5 List of Crystal Systems and Bravais Lattices(B)

1.2.6 Schoenflies and International Notation for Point Groups(A)

1.2.7 Some Typical Crystal Structures(B)

1.2.8 Miller Indices(B)

1.2.9 Bragg and yon Laue Diffraction(AB)

 Problems

2 Lattice Vibrations and Thermal Properties

 2.1 The Born--Oppenheimer Approximation(A)

 2.2 One-Dimensional Lattices(B)

2.2.1 Classical Two-Atom Lattice with Periodic Boundary Conditions(B)

2.2.2 Classical,Large,Perfect Monatomic Lattice,and Introduction to Brillouin Zones(B)

2.2.3 Specific Heat of Linear Lattice(B) 7

2.2.4 Classical Diatomic Lattices: Optic and Acoustic Modes(B)

2.2.5 Classical Lattice with Defects(B)

2.2.6 Quantum-Mechanical Linear Lattice(B)

 2.3 Three-Dimensional Lattices

2.3.1 Direct and Reciprocal Lattices and Pertinent Relations(B)

2.3.2 Quantum-Mechanical Treatment and Classical Calculation of the Dispersion Relation(B)

2.3.3 The Debye Theory of Specific Heat(B)

2.3.4 Anharmonic Terms in The Potential The Gruneisen Parameter(A)

2.3.5 Wave Propagation in an Elastic Crystalline Continuum(MET,MS)

 Problems

3 Electrons in Periodic Potentials

 3.1 Reduction to One-Electron Problem

3.1.1 The Variational Principle(B)

3.1.2 The Hartree Approximation(B)

3.1.3 The Hartreo--Fock Approximation(A)

3.1.4 Coulomb Correlations and the Many-Electron Problem(A)

3.1.5 Density Functional Approximation(A)

 3.2 One-Electron Models

3.2.1 The Kronig-Penney Model(B)

3.2.2 The Free-Electron or Quasifree-Eleetron Approximation(B)

3.2.3 The Problem of One Electron in a Three-Dimensional Periodic Potential

3.2.4 Effect of Lattice Defects on Electronic States in Crystals(A)

 Problems

4 The Interaction of Electrons,and Lattice Vibrations

 4.1 Particles and Interactions of Solid-state Physics(B)

 4.2 The PhOnon-Phonon Interaction(B)

4.2.1 Anharmonic Terms in the Hamiltonian(B)

4.2.2 Normal_and Umklapp Processes(B)

4.2.3 Comment on Thermal Conductivity(B)

 4.3 The Eleetron-Phonon Interaction

4.3.1 Form oftheHamiltonian(B)

4.3.2 Rigid-lon Approximation(B)

4.3.3 The Polaron as a Prototype Quasiparticle(A)

 4.4 Brief Comments on Electron-Electron Interactions(B)

 4.5 The Boltzmann Equation and Electrical Conductivity

4.5.1 Derivation of the Boltzmann Differential Equation(B)

4.5.2 Motivation for Solving the Boltzmann Differential Equation(B)

4.5.3 Scattering Processes and Q Details(B)

4.5.4 The Relaxation-Time Approximate Solution of the Boltzmann Equation for Metals(B)

 4.6 Transport Coefficients

4.6.1 The Electrical Conductivity(B)

4.6.2 The Peltier Coefficient(B)

4.6.3 The Thermal Conductivity(B)

4.6.4 The Thermoelectric Power(B)

4.6.5 Kelvin's Theorem(B)

4.6.6 Transport and Material Properties in Composites(MET,MS)

 Problems

5 Metals,Alloys,and the Fermi Surface

 5.1 Fermi Surface(B)

5.1.1 Empty Lattice(B)

5.1.2 Exercises(B)

 5.2 The Fermi Surface in Real Metals(B)

5.2.1 The Alkali Metals(B)

5.2.2 Hydrogen Metal(B)

5.2.3 The Alkaline Earth Metals(B)

5.2.4 The Noble Metals(B)

 5.3 Experiments Related to the Fermi Surface(B)

 5.4 The de Haas-van Alphen effect(B)

 5.5 Eutectics(MS,ME)

 5.6 Peierls Instability of Linear Metals(B)

5.6.1 Relation to Charge Density Waves(A)

5.6.2 Spin Density Waves(A)

 5.7 Heavy Fermion Systems(A)

 5.8 Electromigration(EE,MS)

 5.9 White Dwarfs and Chandrasekhar's Limit(A)

5.9.1 Gravitational Self-Energy(A)

5.9.2 Idealized Model 0fa White Dwarf(A)

 5.10 Some Famous Metals and Alloys(B,MET)

 Problems

6 Semiconductors

 6.1 Electron Motion

6. I. 1 Calculation of Electron and Hole Concentration(B)

6.1.2 Equation of Motion of Electrons in Energy Bands(B)

6.1.3 Concept of Hole Conduction(B)

6.1.4 Conductivity and Mobility in Semiconductors(B)

6.1.5 Drift of Carriers in Electric and Magnetic Fields:The Hall Effect(B)

6.1.6 Cyclotron Resonance(A)

 6.2 Examples of Semiconductors

6.2.1 Models of Band Structure for Si,Ge and Ⅱ-Ⅵ and Ⅲ-Ⅴ Materials(A)

6.2.2 Comments about GaN(A)

 6.3 Semiconductor Device Physics

6.3.1 Crystal Growth of Semiconductors(EE,MET,MS)

6.3.2 Gunn Effect(EE)

6.3.3 pn-Junctions(EE)

6.3.4 Depletion Width,Varactors,and Graded Junctions(EE)

6.3.5 Metal Semiconductor Junctions the Schottky Barrier(EE)

6.3.6 Semiconductor Surface States and Passivation(EE)

6.3.7 Surfaces Under Bias Voltage(EE)

6.3.8 lnhomogeneous Semiconductors Not in Equilibrium(EE)

6.3.9 Solar Cells(EE)

6.3.10 Transistors(EE)

6.3.11 Charge-Coupled Devices(CCD)(EE)

 Problems

7 Magnetism,Magnons,and Magnetic Resonance

 7.1 Types of Magnetism

7.1.1 Diamagnetism of the Core Electrons(B)

7.1.2 Paramagnetism of Valence Electrons(B)

7.1.3 Ordered Magnetic Systems(B)

 7.2 Origin and Consequences of Magnetic Order

7.2.1 Heisenberg Hamiltonian

7.2.2 Magnetic Anisotropy and Magnetostatic Interactions(A)

7.2.3 Spin Waves and Magnons(B)

7.2.4 Band Ferromagnetism(B)

7.2.5 Magnetic Phase Transitions(A)

 7.3 Magnetic Domains and Magnetic Materials(B)

7.3.1 Origin of Domains and General Comments(B)

7.3.2 Magnetic Materials(EE,MS)

 7.4 Magnetic Resonance and Crystal Field Theory

7.4.1 Simple Ideas About Magnetic Resonance(B)

7.4.2 A Classical Picture of Resonance(B)

7.4.3 The Bloch Equations and Magnetic Resonance(B)

7.4.4 Crystal.Field Theory and Related Topics(B)

 7.5 BriefMentionofOtherTopics

7.5.1 Spintronics or Magnetoelectronics(EE)

7.5.2 The Kondo Effect(A)

7.5.3 Spin Glass(A)

7.5.4 Solitons(A,EE)

 Problems

8 Superconductivity

 8.1 Introduction and Some Experiments(B)

8.1.1 Ultrasonic Attenuation(B)

8.1.2 Electron Tunneling(B)

8.1.3 Infrared Absorption(B)

8.1.4 Flux Quantization(B)

8.1.5 Nuclear Spin Relaxation(B)

8.1.6 Thermal Conductivity(B)

 8.2 The London and Ginzburg-Landau Equations(B)

8.2.1 The Coherence Length(B)

8.2.2 Flux Quantization and Fluxoids(B)

8.2.3 Order of Magnitude for Coherence Length(B)

 8.3 Tunneling(B,EE)

8.3.1 Single-Particle or Giaever Tunneling

8.3.2 Josephson Junction Tunneling

 8.4 SQUID: Superconducting Quantum Interference(EE)

8.4.1 Questions and Answers(B)

 8.5 The Theory of Superconductivity(A)

8.5.1 Assumed Second Quantized Hamiltonian for Electrons and Phonons in Interaction(A)

8.5.2 Elimination of Phonon Variables and Separation of Electron-Electron Attraction Term Due to Virtual Exchange of Phonons(A)

8.5.3 Cooper Pairs and the BCS Hamiltonian(A)

8.5.4 Remarks on the Nambu Formalism and Strong Coupling Superconductivity(A)

 8.6 Magnesium Diboride(EE,MS,MET)

 8.7 Heavy-Electron Superconductors(EE,MS,MET)

 8.8 High-Temperature Superconductors(EE, MS,MET)

 8.9 Summary Comments on Superconductivity(B)

 Problems

9 Dielectrics and Ferroelectrics

 9.1 The Four Types of Dielectric Behavior(B)

 9.2 Electronic Polarization and the Dielectric Constant(B)

 9.3 Ferroelectric Crystals(B)

9.3.1 Thermodynamics of Ferroelectricity by Landau Theory(B)

9.3.2 Further Comment on the Ferroelectric Transition(B,ME)

9.3.3 One-Dimensional Model of the Soft Mode of Ferroelectrie Transitions(A)

 9.4 Dielectric Screening and Plasma Oscillations(B)

9.4.1 Helicons(EE)

9.4.2 Aifven Waves(EE)

 9.5 Free-Electron Screening

9.5.1 Introduction(B)

9.5.2 The Thomas-Fermi and Debye--Huckei Methods(A,EE)

9.5.3 The Lindhard Theory of Screening(A)

 Problems

10 Optical Properties of Solids

 10.1 Introduction(B)

 10.2 Macroscopic Properties(B)

10.2.1 Kronig-Kramers Relations(A)

 10.3 Absorption of Electromagnetic Radiation-General(B)

 10.4 Direct and Indirect Absorption Coefficients(B)

 10.5 Oscillator Strengths and Sum Rules(A)

 10.6 Critical Points and Joint Density of States(A)

 10.7 Exeiton Absorption(A)

 10.8 Imperfections(B,MS,MET)

 10.9 Optical Properties of Metals(B,EE,MS)

 10.10 Lattice Absorption,Restrahlen,and Polaritons(B)

10.10.1 General Results(A)

10.10.2 Summary of the Properties of ε(q,ω)(B)

10.10.3 Summary of Absorption Processes:General Equations(B)

 10.11 Optical Emission,Optical Scattering and Photoemission(B)

10.11.1 Emission(B)

10.11.2 Einstein A and B Coefficients(B,EE,MS)

10.11.3 Raman and Brillouin Scattering(B,MS)

 10.12 Magneto-Optic Effects: The Faraday Effect(B,EE,MS)

 Problems

11 Defects in Solids

 11.1 Summary About Important Defects(B)

 11.2 Shallow and Deep Impurity Levels in Semiconductors(EE)

 11.3 Effective Mass Theory,Shallow Defects,and Supedattices(A)

11.3.1 Envelope Functions(A)

11.3.2 First Approximatiun(A)

11.3.3 Second Approximation(A)

 11.4 Color Centers(B)

 11.5 Diffusion(MET,MS)

 11.6 Edge and Screw Dislocation(MET,MS)

 11.7 Thermionic Emission(B)

 11.8 Cold-Field Emission(B)

 11.9 Microgravity(MS)

 Problems

12 Current Topics in Solid Condensed-Matter Physics

 12.1 Surface Reconstruction(MET,MS)

 12.2 Some Surface Characterization Techniques(MET,MS,EE)

 12.3 Molecular Beam Epitaxy(MET,MS)

 12.4 Heterostructures and Quantum Wells

 12.5 Quantum Structures and Single-Electron Devices(EE)

12.5.1 Coulomb Blockade(EE)

12.5.2 Tunneling and the Landauer Equation(EE)

 12.6 Superlattices,Bloch Oscillators,Stark-Wannier Ladders

12.6.1 Applications of Superlattices and Related Nanostructures(EE)

 12.7 Classical and Quantum Hall Effect(A)

12.7.1 Classical Hall Effect- CHE(A)

12.7.2 The Quantum Mechanics of Electrons in a Magnetic Field: The Landau Gauge(A)

12.7.3 Quantum Hall Effect: General Comments(A)

 12.8 Carbon-Nanotubes and Fullerene Nanotechnology(EE)

 12.9 Amorphous Semiconductors and the Mobility Edge(EE)

12.9.1 Hopping Conductivity(EE)

 12.10 Amorphous Magnets(MET,MS)

 12.11 Soft Condensed Matter(MET,MS)

12.11.1 General Comments

12.11.2 Liquid Crystals(MET,MS)

12.11.3 Polymers and Rubbers(MET,MS)

 Problems

Appendices

 A Units

 B Normal Coordinates

 C Derivations of Bloch's Theorem

C.1 Simple One-Dimensional Derivation

C.2 Simple Derivation in Three Dimensions

C.3 Derivation of BIoch's Theorem by Group Theory

 D Density Matrices and Thermodynamics

 E Time-Dependent Perturbation Theory

 F Derivation of The Spin-Orbit Term From Dirac's Equation

 G The Second Quantization Notation for Fermions and Bosons

G.1 Bose Particles

G.2 Fermi Particles

 H The Many=Body Problem

H.1 Propagators

H.2 Green Functions

H.3 Feynman Diagrams

H.4 Definitions

H.5 Diagrams and the Hartree and Hartree-Fock Approximations

H.6 The Dyson Equation

Bibliography

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Appendices

Subject References

Further Reading

Index

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/4/2 4:57:33