由马多雷编著的《非交换微分几何及其在物理学中的应用导论》是以1994年作者在LMS的讲演稿为蓝本。这是第2版,在第1版的基础上做了大量的修订,增加了不少有关实条件和线性联络的新材料和Jordan变形和量子Euclidean空间,具有基本的常微分几何知识和纤维丛理论就可以完全理解这些知识。
1 Introduction
2 Differential Geometry
2.1 Diiferential manifolds
2.2 Metrics and connections
2.3 Cohomology
3 Matrix Geometry
3.1 Differential forms Ⅰ
3.2 Differential forms Ⅱ
3.3 Tensor products
3.4 Metrics
3.5 Yang-Mills connections
3.6 Linear connections
3.7 Curvature
4 Noncommutative Geometry
4.1 General algebras
4.2 Poisson structures
4.3 Topological algebras
4.4 Quantum groups
5 Vector Bundles
5.1 K-theory
5.2 A matrix analogue
5.3 Predholm modules
6 Cyclic Homology
6.1 The universal calculus
6.2 Cyclic homology
6.3 Morita equivalence
6.4 The Loday-QuiUen theorem
7 Modifications of Space-Time
7.1 Noncommutative space-time
7.2 A finite model
7.3 Fuzzy physics
8 Extensions of Space-Time
8.1 The spinning particle
8.2 Noncommutative electrodynamics
8.3 Modified Kaluza-Klein theory