《从全纯函数到复流形(英文版)》是一部介绍复流形理论的入门书籍。作者用尽可能简单的方法使读者熟悉多变量复分析中的重要分支和方法,所以避免出现比较抽象的概念,如,层、凝聚和高维上同调等,仅运用了基本方法幂级数、正则向量丛和一维上闭链。然而,解析集Remmert-Stein定理,正则向量丛中的截面空间有限定理以及Levi问题解这些深层次的都得到了完整的证明。每章的结束都有大量的例子和练习。具备实分析、代数、拓扑以及单变量理论知识就可以完全读懂这《从全纯函数到复流形(英文版)》。《从全纯函数到复流形(英文版)》可以作为学习多变量的入门教程,也是一本很好的参考书。
读者对象:《从全纯函数到复流形(英文版)》适用于数学专业的广大师生。
Preface
Ⅰ Holomorphic Functions
1.Complex Geometry
Real and Complex Structures
Hermitian Forms and Inner Products
Balls and Polydisks
Connectedness
Reinhardt Domains
2.Power Series
Polynomials
Convergence
Power Series
3.Complex Differentiable Functions
The Complex Gradient
Weakly Holomorphic Functions
Holomorphic Functions
4.The Cauchy Integral
The Integral Formula
Holomorphy of the Derivatives
The Identity Theorem
5.The Hartogs Figure
Expansion in Reinhardt Domains
Hartogs Figures
6.The Cauchy-Riemann Equations
Real Differentiable Functions
Wirtinger's Calculus
The Cauchy-Riemann Equations
7.Holomorphic Maps
The Jacobian
Chain Rules
Tangent Vectors
The Inverse Mapping
8.Analytic Sets
Analytic Subsets
……
Ⅱ Domains of Holomorphy
Ⅲ Analytic Sets
Ⅳ Complex Manifolds
Ⅴ Stein Theory
Ⅵ Kahler Manifolds
Ⅶ Boundary Behavior
References
Index of Notation
Index