网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 李群
分类 科学技术-自然科学-数学
作者 (美)巴浦
出版社 世界图书出版公司
下载
简介
编辑推荐

This book aims to be a course in Lie groups that can be covered in one year with a group of good graduate students. I have attempted to address a problem that anyone teaching this subject must have, which is that the amount of essential material is too much to cover.

目录

Preface

Part I: Compact Groups

 1 Haar Measure

 2 Schur Orthogonality

 3 Compact Operators

 4 The Peter-Weyl Theorem

Part II: Lie Group Fundamentals

 5 Lie Subgroups of GL(n, C)

 6 Vector Fields

 7 Left-Invariant Vector Fields

 8 The Exponential Map

 9 Tensors and Universal Properties

 10 The Universal Enveloping Algebra

 11 Extension of Scalars

 12 Representations of S1(2, C)

 13 The Universal Cover

 14 The Local Frobenius Theorem

 15 Tori

 16 Geodesics and Maximal Tori

 17 Topological Proof of Cartan's Theorem

 18 The Weyl Integration Formula

 19 The Root System

 20 Examples of Root Systems

 21 Abstract Weyl Groups

 22 The Fundamental Group

 23 Semisimple Compact Groups

 24 Highest-Weight Vectors

 25 The Weyl Character Formula

 26 Spin

 27 Complexification

 28 Coxeter Groups

 29 The Iwasawa Decomposition

 30 The Bruhat Decomposition

 31 Symmetric Spaces

 32 Relative Root Systems

 33 Embeddings of Lie Groups

Part III: Topics

 34 Mackey Theory

 35 Characters of GL(n,C)

 36 Duality between Sk and GL(n,C)

 37 The Jacobi-Trudi Identity

 38 Schur Polynomials and GL(n,C)

 39 Schur Polynomials and Sk

 40 Random Matrix Theory

 41 Minors of Toeplitz Matrices

 42 Branching Formulae and Tableaux...

 43 The Cauchy Identity

 44 Unitary Branching Rules

 45 The Involution Model for Sk

 46 Some Symmetric Algebras

 47 Gelfand Pairs

 48 Hecke Algebras

 49 The Philosophy of Cusp Forms

 50 Cohomology of Grassmannians

References

Index

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/4/4 10:17:56