《常微分方程及其应用--理论与模型》是一本双语课教材。将常微分方程作为双语课,是因为学生不仅可以学到有关常微分方程、微积分和高等代数方面的专业术语,还可以通过不同领域的应用案例拓展阅读范围,从而提高学生的专业英语水平。为了使学生更好地理解和掌握学科知识,提高双语教学的教学质量和教学效果,书中对专业术语、比较难懂的词句作了注释。本书由周宇虹、罗建书编著。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 常微分方程及其应用--理论与模型(21世纪高等院校教材) |
分类 | 科学技术-自然科学-数学 |
作者 | 周宇虹//罗建书 |
出版社 | 科学出版社 |
下载 | ![]() |
简介 | 编辑推荐 《常微分方程及其应用--理论与模型》是一本双语课教材。将常微分方程作为双语课,是因为学生不仅可以学到有关常微分方程、微积分和高等代数方面的专业术语,还可以通过不同领域的应用案例拓展阅读范围,从而提高学生的专业英语水平。为了使学生更好地理解和掌握学科知识,提高双语教学的教学质量和教学效果,书中对专业术语、比较难懂的词句作了注释。本书由周宇虹、罗建书编著。 内容推荐 《常微分方程及其应用--理论与模型》是常微分方程课程的英文教材,是作者结合多年的双语教学经验编写而成。全书共5章,包括一阶线性微分方程,高阶线性微分方程,线性微分方程组。Laplace变换及其在微分方程求解中的应用,以及微分方程的稳定性理论。书中配有大量的应用实例和用Matlab软件绘制的微分方程解的相图,并介绍了绘制相图的程序。 《常微分方程及其应用--理论与模型》可作为高等院校理工科偏理或非数学专业的本科双语教材,也可供相关专业的研究生、教师和广大科技人员参考。本书由周宇虹、罗建书编著。 目录 Chapter 1 First.order Differential Equations 1.1 Introduction Exercise 1.1 1.2 First—order Linear Differential Equations 1.2.1 First—order Homogeneous Linear Differential Equations 1.2.2 First—order Nonhomogeneous Linear Differential Equations 1.2.3 Bernoulli Equations Exercise 1.2 1.3 Separable Equations 1.3.1 Separable Equations 1.3.2 Homogeneous Equations Exercise 1.3 1.4 Applications Module 1 The Spread of Technological Innovations Module 2 The Van Meegeren Art Forgeries 1.5 Exact Equations 1.5.1 Criterion for Exactness 1.5.2 Integrating Factor Exercise 1 5 1.6 Existence and Uniqueness of Solutions Exercise 1.6 Chapter 2 Second.order Differential Equations 2.1 General Solutions of Homogeneous Second—order Linear Equations Exercise 2.1 2.2 Homogeneous Second—order Linear Equations with Constant Coeffcients 2.2.1 The Characteristic Equation Has Distinct Real Roots 2.2.2 The Characteristic Equation Has Repeated Roots 2.2.3 The Characteristic Equation Has ComNeX Conjugate Roo~s Exercise 2.2 2.3 Nonhomogeneous Second—order Linear Equations 2.3.1 Structure of General Solutions 2.3.2 Method of Variation of Parameters 2.3.3 Methods for Some Special Form of the Nonhomogeneous Term g(t) Exercise 2.3 2.4 Applications Module 1 An Atomic Waste Disposal Problem. Module 2 Mechanical Vibrations Chapter 3 Linear Systems of Differential Equations 3.1 Basic Concepts and Theorems Exercise 3.1 3.2 The Eigenvalue-Eigenvector Method of Finding Solutions 3.2.1 The Characteristic Polynomial of A Has n Distinct Real Eigenvalues 3.2.2 The Characteristic Polynomial of A Has Complex Eigenvalues 3.2.3 The Characteristic Polynomial of A Has Equal Eigenvalues Exercise 3.2 3.3 YhndamentM Matrix Solution;Matrix—valued Exponential Function eAt Exercise 3.3 3.4 Nonhomogeneous Equations;Variation of Parameters Exercise 3.4 3.5 Applications Module 1 The Principle of Competitive Exclusion in Population Biology. Module 2 A Model for the Blood Glucose Regular System Chapter 4 Laplace Transforms and Their Applications in Solving Differential Equations 4.1 Laplace Transforms Exercise 4.1 4.2 Properties of Laplace Transforms Exercise 4.2 4.3 Inverse Laplace Transforms Exercise 4.3 4.4 Solving Differential Equations by Laplace Transforms 4.4.1 The Right-Hand Side of the Differential Equation is Discontinuous 4.4.2 The Right-Hand Side of Differential Equation is an Impulsive Function Exercise 4.4 4.5 Solving Systems of Differential Equations by Laplace Transforms Exercise 4.5 Chapter 5 Introduction to the Stability Theory 5.1 Introduction Exercise 5.1 5.2 Stability of the Solutions of Linear System Exercise 5.2 5.3 Geometrical Characteristics of Solutions of the System of Differential Equations 5.3.1 Phase Space and Direction Field 5.3.2 Geometric Characteristics of the Orbits near a Singular Point 5.3.3 Stability of Singular Points Exercise 5.3 5.4 Applications Module 1 Volterra's Principle Module 2 Mathematical Theories of War Answers to Selected Exercises References 附录 软件包Iode简介 |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。