网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 计算物理学(第2版)
分类 科学技术-自然科学-物理
作者 (荷)蒂森
出版社 世界图书出版公司
下载
简介
编辑推荐

蒂森编著的《计算物理学(英文版)(第2版)》是一部理论物理研究的计算方法的教程。新增加的部分包括,有限元方法,格点Boltzmann模拟,密度函数理论,量子分子动力学,Monte Carlo模拟和一维量子系统的对角化。书中囊括了了物理研究的很多不同方面和不同计算方法论。如Monte Carlo方法和分子模拟动力学以及各种电子结构方法论,偏微分方程解方法,格点规范理论。全书都在强调不同物理场中的方法之间的关系,内容较为简洁明快,具有基本编程,数值分析,场论以及凝聚态理论和统计物理的本科知识背景就可以完全读懂本书。不管是理论物理,计算物理还是实验物理专业的研究生还是科研人员,本书都相当有参考价值。目次:导论;具有球对称势的量子散射;Schrdinger方程的变分大法;Hartree-fock方法;密度函数理论;周期性固态Schr.dinger方程解法;经典平衡态统计力学;分子动力学模拟;量子分子动力学;Monte Carlo方法;变换矩阵和自旋链的对角化;量子Monte Carlo方法,偏微分方程的有限元方法,流体力学的Lattice Boltzmann方法,格点场论的计算方法;高效能计算和并行法;附:数值法;随机数发生器。

目录

Preface to the first edition

Preface to the second edition

1 Introduction

 1.1 Physics and computational physics

 1.2 Classical mechanics and statistical mechanics

 1.3 Stochastic simulations

 1.4 Electrodynamics and hydrodynamics

 1.5 Quantum mechanics

 1.6 Relations between quantum mechanics and classical

 statistical physics

 1.7 Quantum molecular dynamics

 1.8 Quantum field theory

 1.9 About this book

 Exercises

 References

2 Quantum scattering with a spherically symmetric

 potential

 2.1 Introduction

 2.2 A program for calculating cross sections

 2.3 Calculation of scattering cross sections

 Exercises

 References

3 The variational method for the Schriidinger equation

 3.1 Variational calculus

 3.2 Examples of variational calculations

 3.3 Solution of the generalised eigenvalue problem

 3.4 Perturbation theory and variational calculus

 Exercises

 References

4 The l-lartree---Fock method

 4.1 Introduction

 4.2 The Born-Oppenheimer approximation and the independent-particle method

 4.3 The helium atom

 4.4 Many-electron systems and the Slater determinant

 4.5 Self-consistency and exchange: Hartree-Fock theory

 4.6 Basis functions

 4.7 The structure of a Hartree-Fock computer program

 4.8 Integrals involving Gaussian functions

 4.9 Applications and results

 4.10 Improving upon the Hartree-Fock approximation

 Exercises

 References

5 Density functional theory

 5.1 Introduction

 5.2 The local density approximation

 5.3 Exchange and correlation: a closer look

 5.4 Beyond DFT: one- and two-particle excitations

 5.5 A density functional program for the helium atom

 5.6 Applications and results

 Exercises

 References

6 Solving the Schriidinger equation in periodic solids

 6.1 Introduction: definitions

 6.2 Band structures and Bloch's theorem

 6.3 Approximations

 6.4 Band structure methods and basis functions

 6.5 Augmented plane wave methods

 6.6 The linearised APW (LAPW) method

 6.7 The pseudopotential method

 6.8 Extracting information from band structures

 6.9 Some additional remarks

 6.10 Other band methods

 Exercises

 References

7 Classical equilibrium statistical mechanics

 7.1 Basic theory

 7.2 Examples of statistical models; phase transitions

 7.3 Phase transitions

 7.4 Determination of averages in simulations

 Exercises

 References

8 Molecular dynamics simulations

 8.1 Introduction

 8.2 Molecular dynamics at constant energy

 8.3 A molecular dynamics simulation program for argon

 8.4 Integration methods: symplectic integrators

 8.5 Molecular dynamics methods for different ensembles

 8.6 Molecular systems

 8.7 Long-range interactions

 8.8 Langevin dynamics simulation

 8.9 Dynamical quantities: nonequilibrium molecular dynamics

 Exercises

 References

9 Quantum molecular dynamics

 9.1 Introduction

 9.2 The molecular dynamics method

 9.3 An example: quantum molecular dynamics for the hydrogen molecule

 9.4 Orthonormalisation; conjugate gradient and RM-DIIS techniques

 9.5 Implementation of the Car-Parrinello technique for pseudopotential DFT

 Exercises

 References

10 The Monte Carlo method

 10.1 Introduction

 10.2 Monte Carlo integration

 10.3 Importance sampling through Markov chains

 10.4 Other ensembles

 10.5 Estimation of free energy and chemical potential

 10.6 Further applications and Monte Carlo methods

 10.7 The temperature of a finite system

 Exercises

 References

11 Transfer matrix and diagonalisation of spin chains

 11.1 Introduction

 11.2 The one-dimensional Ising model and the transfer matrix

 11.3 Two-dimensional spin models

 11.4 More complicated models

 11.5 'Exact' diagonalisation of quantum chains

 11.6 Quantum renormalisation in real space

 11.7 The density matrix renormalisation group method

 Exercises

 References

12 Quantum Monte Carlo methods

 12.1 Introduction

 12.2 The variational Monte Carlo method

 12.3 Diffusion Monte Carlo

 12.4 Path-integral Monte Carlo

 12.5 Quantum Monte Carlo on a lattice

 12.6 The Monte Carlo transfer matrix method

 Exercises

 References

13 The finite element method for partial differential equations

 13.1 Introduction

 13.2 The Poisson equation

 13.3 Linear elasticity

 13.4 Error estimators

 13.5 Local refinement

 13.6 Dynamical finite element method

 13.7 Concurrent coupling of length scales: FEM and MD

 Exercises

 References

14 The lattice Boltzmann method for fluid dynamics

 14.1 Introduction

 14.2 Derivation of the Navier-Stokes equations

 14.3 The lattice Boltzmann model

 14.4 Additional remarks

 14.5 Derivation of the Navier-Stokes equation from the lattice Boltzmann model

 Exercises

 References

15 Computational methods for lattice field theories

 15.1 Introduction

 15.2 Quantum field theory

 15.3 Interacting fields and renormalisation

 15.4 Algorithms for lattice field theories

 15.5 Reducing critical slowing down

 15.6 Comparison of algorithms for scalar field theory

 15.7 Gauge field theories

 Exercises

 References

16 High performance computing and parallelism

 16.1 Introduction

 16.2 Pipelining

 16.3 Parallelism

 16.4 Parallel algorithms for molecular dynamics

 References

Appendix A Numerical methods

 A1 About numerical methods

 A2 Iterative procedures for special functions

 A3 Finding the root of a function

 A4 Finding the optimum of a function

 A5 Discretisation

 A6 Numerical quadratures

 A7 Differential equations

 A8 Linear algebra problems

 A9 The fast Fourier transform

 Exercises

 References

Appendix B Random number generators

 B1 Random numbers and pseudo-random numbers

 B2 Random number generators and properties of pseudo-random numbers

 B3 Nonuniform random number generators

 Exercises

 References

Index

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/4/4 21:01:56