宇宙学是一门高度综合的学科,几乎涉及了理论物理学所有的领域,包括广义相对论、热力学及统计物理学、核物理、原子物理、运动论、粒子物理学及场论。本书作者是这一理论的创始人之一,他在本书中详细地阐述了现代宇宙学的物理基础以及由它导出的各种重要的理论结果。
本书作者为了使本书适用于大学生,尽力做到不要求读者具有任何特殊领域的预备知识。除了很少的实例外,本书所有的公式都是利用大学课程学过的基本物理学原理导出的。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 宇宙学的物理基础/经典英文物理教材系列 |
分类 | 科学技术-自然科学-天文地理 |
作者 | (德)马克翰维 |
出版社 | 世界图书出版公司 |
下载 | ![]() |
简介 | 编辑推荐 宇宙学是一门高度综合的学科,几乎涉及了理论物理学所有的领域,包括广义相对论、热力学及统计物理学、核物理、原子物理、运动论、粒子物理学及场论。本书作者是这一理论的创始人之一,他在本书中详细地阐述了现代宇宙学的物理基础以及由它导出的各种重要的理论结果。 本书作者为了使本书适用于大学生,尽力做到不要求读者具有任何特殊领域的预备知识。除了很少的实例外,本书所有的公式都是利用大学课程学过的基本物理学原理导出的。 目录 Foreword by Professor Andrei Linde Preface Acknowledgements Units and conventions Part I Homogeneous isotropic universe 1 Kinematics and dynamics of an expanding universe 1.1 Hubble law 1.2 Dynamics of dust in Newtonian cosmology 1.2.1 Continuity equation 1.2.2 Acceleration equation 1.2.3 Newtonian solutions 1.3 From Newtonian to relativistic cosmology 1.3.1 Geometry of an homogeneous, isotropic space 1.3.2 The Einstein equations and cosmic evolution 1.3.3 Friedmann equations 1.3.4 Conformal time and relativistic solutions 1.3.5 Milne universe 1.3.6 De Sitter universe 2 Propagation of light and horizons 2.1 Light geodesics 2.2 Horizons 2.3 Conformal diagrams 2.4 Redshift 2.4.1 Redshift as a measure of time and distance 2.5 Kinematic tests 2.5.1 Angular diameter-redshift relation 2.5.2 Luminosity-redshift relation 2.5.3 Number counts 2.5.4 Redshift evolution 3 The hot universe 3.1 The composition of the universe 3.2 Brief thermal history 3.3 Rudiments of thermodynamics 3.3.1 Maximal entropy state, thermal spectrum, conservation laws and chemical potentials 3.3.2 Energy density, pressure and the equation of state 3.3.3 Calculating integrals 3.3.4 Ultra-relativistic particles 3.3.5 Nonrelativistic particles 3.4 Lepton era 3.4.1 Chemical potentials 3.4.2 Neutrino decoupling and electron-positron annihilation 3.5 Nucleosynthesis 3.5.1 Freeze-out of neutrons 3.5.2 "Deuterium bottleneck" 3.5.3 Helium-4 3.5.4 Deuterium 3.5.5 The other light elements 3.6 Recombination 3.6.1 Helium recombination 3.6.2 Hydrogen recombination: equilibrium consideration 3.6.3 Hydrogen recombination: the kinetic approach 4 The very early universe 4.1 Basics 4.1.1 Local gauge invariance 4.1.2 Non-Abelian gauge theories 4.2 Quantum chromodynamics and quark-gluon plasma 4.2.1 Running coupling constant and asymptotic freedom 4.2.2 Cosmological quark-gluon phase transition 4.3 Electroweak theory 4.3.1 Fermion content 4.3.2 "Spontaneous breaking" of U(1) symmetry 4.3.3 Gauge bosons 4.3.4 Fermion interactions 4.3.5 Fermion masses 4.3.6 CP violation 4.4 "Symmetry restoration" and phase transitions 4.4.1 Effective potential 4.4.2 U(1) model 4.4.3 Symmetry restoration at high temperature 4.4.4 Phase transitions 4.4.5 Electroweak phase transition 4.5 Instantons, sphalerons and the early universe 4.5.1 Particle escape from a potential well 4.5.2 Decay of the metastable vacuum 4.5.3 The vacuum structure of gauge theories 4.5.4 Chiral anomaly and nonconservation of the fermion number 4.6 Beyond the Standard Model 4.6.1 Dark matter candidates 4.6.2 Baryogenesis 4.6.3 Topological defects 5 Inflation I: homogeneous limit 5.1 Problem of initial conditions 5.2 Inflation: main idea 5.3 How can gravity become "repulsive"? 5.4 How to realize the equation of state p ≈ -e 5.4.1 Simple example 5.4.2 General potential: slow-roll approximation 5.5 Preheating and reheating 5.5.1 Elementary theory 5.5.2 Narrow resonance 5.5.3 Broad resonance 5.5.4 Implications 5.6 "Menu" of scenarios Part II Inhomogeneous universe 6 Gravitational instability in Newtonian theory 6.1 Basic equations 6.2 Jeans theory 6.2.1 Adiabatic perturbations 6.2.2 Vector perturbations 6.2.3 Entropy perturbations 6.3 Instability in an expanding universe 6.3.1 Adiabatic perturbations 6.3.2 Vector perturbations 6.3.3 Self-similar solution 6.3.4 Cold matter in the presence of radiation or dark energy 6.4 Beyond linear approximation 6.4.1 Tolman solution 6.4.2 Zel'dovich solution 6.4.3 Cosmic web 7 Gravitational instability in General Relativity 7.1 Perturbations and gauge-invariant variables 7.1.1 Classification of perturbations 7.1.2 Gauge transformations and gauge-invariant variables 7.1.3 Coordinate systems 7.2 Equations for cosmological perturbations 7.3 Hydrodynamical perturbations 7.3.1 Scalar perturbations 7.3.2 Vector and tensor perturbations 7.4 Baryon-radiation plasma and cold dark matter 7.4.1 Equations 7.4.2 Evolution of perturbations and transfer functions 8 Inflation II: origin of the primordial inhomogeneities 8.1 Characterizing perturbations 8.2 Perturbations on inflation (slow-roll approximation) 8.2.1 Inside the Hubble scale 8.2.2 The spectrum of generated perturbations 8.2.3 Why do we need inflation? 8.3 Quantum cosmological perturbations 8.3.1 Equations 8.3.2 Classical solutions 8.3.3 Quantizing perturbations 8.4 Gravitational waves from inflation 8.5 Self-reproduction of the universe 8.6 Inflation as a theory with predictive power 9 Cosmic microwave background anisotropies 9.1 Basics 9.2 Sachs-Wolfe effect 9.3 Initial conditions 9.4 Correlation function and multipoles 9.5 Anisotropies on large angular scales 9.6 Delayed recombination and the finite thickness effect 9.7 Anisotropies on small angular scales 9.7.1 Transfer functions 9.7.2 Multipole moments 9.7.3 Parameters 9.7.4 Calculating the spectrum 9.8 Determining cosmic parameters 9.9 Gravitational waves 9.10 Polarization of the cosmic microwave background 9.10.1 Polarization tensor 9.10.2 Thomson scattering and polarization 9.10.3 Delayed recombination and polarization 9.10.4 E and B polarization modes and correlation functions 9.11 Reionization Bibliography Expanding universe (Chapters 1 and 2) Hot universe and nucleosynthesis (Chapter 3) Particle physics and early universe (Chapter 4) Inflation (Chapters 5 and 8) Gravitational instability (Chapters 6 and 7) CMB fluctuations (Chapter 9) Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。