《旋论与时空》上下两卷是由Roger Penrose和Wolfgang Rindler的著作组成,介绍了2-弦量微积分、扭曲理论以及详细讲述了这些强有力的方法如何很好的运用于时空结构和性质的阐释。本书将对学习相对论、微分几何、粒子物理以及量子场论的学生以及老师都有很大的价值。
本卷主要介绍时空几何中的弦量和扭曲理论,引入扭曲理论并且深入如何将扭曲理论和2-弦量应用于时空的学习。近年来,扭曲作为一种数学工具以及洞察物理理论结构的新方法得到越来越多人的青睐。本书还全面介绍了时空无限性的保形方法、时空曲率张量的弦量分类以及简述了零测地线几何。尽管这卷书接着第一卷讲述时空,只要熟悉2-弦量方法完全可以独立学习这本书。
Preface
Summary of Volume 1
6 Twistors
6.1 The twistor equation and its solution space
6.2 Some geometrical aspects of twistor algebra
6.3 Twistors and angular momentum
6.4 Symmetric twistors and massless fields
6.5 Conformai Killing vectors, conserved quantities and exact sequences
6.6 Lie derivatives of spinors
6.7 Particle constants; conformally invariant operators
6.8 Curvature and conformai rescaling
6.9 Local twistors
6.10 Massless fields and twistor cohomology
7 Null congruences
7.1 Null congruences and spin-coefficients
7.2 Null congruences and space-time curvature
7.3 Shear-free ray congruences
7.4 SFRs, twistors and ray geometry
8 Classification of curvature tensors
8.1 The null structure of the Weyl spinor
8.2 Representation of the Weyi spinor on S+
8.3 Eigenspinors of the Weyl spinor
8.4 The eigenbivectors of the Weyl tensor and its Petrov classification
8.5 Geometry and symmetry of the Weyl curvature
8.6 Curvature covariants
8.7 A classification scheme for general spinors
8.8 Classification of the Ricci spinor
9 Conformal infinity
9.1 Infinity for Minkowski space
9.2 Compactified Minkowski space
9.3 Complexified compactified Minkowski space and twistor geometry
9.4 Twistor four-valuedness and the Grgin index
9.5 Cosmological models and their twistors
9.6 Asymptotically simple space-times
9.7 Peeling properties
9.8 The BMS group and the structure of J+
9.9 Energy-momentum and angular momentum
9.10 Bondi-Sachs mass loss and positivity
Appendix: spinors in n dimensions
References
Subject and author index
Index of symbols