本书为《国外数学名著系列》丛书之一。该丛书是科学出版社组织学术界多位知名院士、专家精心筛选出来的一批基础理论类数学著作,读者对象面向数学系高年级本科生、研究生及从事数学专业理论研究的科研工作者。
本册为《几何(Ⅲ曲面理论影印版)57》,本书包含了欧几里德的几何曲面理论。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略 音乐专区
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。
| 电子书 | 几何(Ⅲ曲面理论影印版)(精)/国外数学名著系列 |
| 分类 | 电子书下载 |
| 作者 | (俄罗斯)布拉格 |
| 出版社 | 科学出版社 |
| 下载 |
|
| 介绍 |
编辑推荐 本书为《国外数学名著系列》丛书之一。该丛书是科学出版社组织学术界多位知名院士、专家精心筛选出来的一批基础理论类数学著作,读者对象面向数学系高年级本科生、研究生及从事数学专业理论研究的科研工作者。 本册为《几何(Ⅲ曲面理论影印版)57》,本书包含了欧几里德的几何曲面理论。 内容推荐 The theory of surfaces in Euclidean spaces is remarkably rich in deep results and applications.This volume of the Encyclopaedia is concerned mainly with the connection between the theory of embedded surfaces and Riemannian geometry and with the geometry of surfaces as influenced by intrinsic metrics. 目录 Preface Chapter 1. The Geometry of Two-Dimensional Manifolds and Surfaces in En 1. Statement of the Problem 1.1. Classes of Metrics and Classes of Surfaces. Geometric Groups and Geometric Properties 2. Smooth Surfaces 2.1. Types of Points 2.2. Classes of Surfaces 2.3. Classes of Metrics 2.4. G-Connectedness 2.5. Results and Conjectures 2.6. The Conformal Group 3. Convex, Saddle and Developable Surfaces with No Smoothness Requirement 3.1. Classes of Non-Smooth Surfaces and Metrics 3.2. Questions of Approximation 3.3. Results and Conjectures 4. Surfaces and Metrics of Bounded Curvature 4.1. Manifolds of Bounded Curvature 4.2. Surfaces of Bounded Extrinsic Curvature Chapter 2. Convex Surfaces 1. Weyl's Problem 1.1. Statement of the Problem 1.2. Historical Remarks 1.3. Outline of One of the Proofs 2. The Intrinsic Geometry of Convex Surfaces. The Generalized Weyl Problem 2.1. Manifolds of Non-Negative Curvature in the Sense of Aleksandrov 2.2. Solution of the Generalized Weyl Problem 2.3. The Gluing Theorem 3. Smoothness of Convex Surfaces 3.1. Smoothness of Convex Immersions 3.2. The Advantage of Isothermal Coordinates 3.3. Consequences of the Smoothness Theorems 4. Bendings of Convex Surfaces 4.1. Basic Concepts 4.2. Smoothness of Bendings 4.3. The Existence of Bendings 4.4. Connection Between Different Forms of Bendings 5. Unbendability of Closed Convex Surfaces 5.1. Unique Determination 5.2. Stability in Weyl's Problem 5.3. Use of the Bending Field 6. Infinite Convex Surfaces 6.1. Non-Compact Surfaces 6.2. Description of Bendings 7. Convex Surfaces with Given Curvatures 7.1. Hypersurfaces 7.2. Minkowski's Problem 7.3. Stability 7.4. Curvature Functions and Analogues of the Minkowski Problem 7.5. Connection with the Monge-Ampere Equations 8. Individual Questions of the Connection Between the Intrinsic and Extrinsic Geometry of Convex Surfaces 8.1. Properties of Surfaces 8.2. Properties of Curves 8.3. The Spherical Image of a Shortest Curve 8.4. The Possibility of Certain Singularities Vanishing Under Bendings Chapter 3. Saddle Surfaces 1. Efimov's Theorem and Conjectures Associated with It 1.1. Sufficient Criteria for Non-Immersibility in E3 1.2. Sufficient Criteria for Immersibility in E3 1.3. Conjecture About a Saddle Immersion in E" 1.4. The Possibility of Non-Immersibility when the Manifold is Not Simply-Connected 2. On the Extrinsic Geometry of Saddle Surfaces 2.1. The Variety of Saddle Surfaces 2.2. Tapering Surfaces 3. Non-Regular Saddle Surfaces 3.1. Definitions 3.2. Intrinsic Geometry 3.3. Problems of Immersibility 3.4. Problems of Non-Immersibility Chapter 4. Surfaces of Bounded Extrinsic Curvature 1. Surfaces of Bounded Positive Extrinsic Curvature 1.1. Extrinsic Curvatures of a Smooth Surface 1.2. Extrinsic Curvatures of a General Surface 1.3. Inequalities 2. The Role of the Mean Curvature 2.1. The Mean Curvature of a Non-Smooth Surface 2.2. Surfaces of Bounded Mean Curvature 2.3. Mean Curvature as First Variation of the Area 3. C1-Smooth Surfaces of Bounded Extrinsic Curvature 3.1. The Role of the Condition of Boundedness of the Extrinsic Curvature 3.2. Normal C1-Smooth Surfaces 3.3. The Main Results 3.4. Gauss's Theorem 3.5. Cl-Smooth Surfaces 4. Polyhedra 4.1. The Role of Polyhedra in the General Theory 4.2. Polyhedral Metric and Polyhedral Surface 4.3. Results and Conjectures 5. Appendix. Smoothness Classes Comments on the References References |
| 截图 | |
| 随便看 |
|
免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me