网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 激光原理(第4版)
分类 科学技术-工业科技-电子通讯
作者 (意)斯维尔托
出版社 世界图书出版公司
下载
简介
编辑推荐

这是一部介绍激光基本原理的堪称经典的著作。内容非常广泛,涵盖了与激光物理与技术相关的一切必要的概念、原理和最新的应用的详细介绍,注重了理论与实验的密切结合,同时也给出了为理解这一不断发展的学科所必需的基本数学框架。本书共有12章,每一章都包含有大量习题,书末给出了部分解答。掌握该书的内容将会为尽快进入相关的前沿研究领域奠定很好的基础。

目录

Lists of Examples

1. Introductory Concepts

  1.1. Spontaneous and Stimulated Emission, Absorption

  1.2. The Laser Idea

  1.3. Pumping Schemes

1.4. Properties of Laser Beams

  1.4.1. Monochromaticity

  1.4.2. Coherence

  1.4.3. Directionality

  1.4.4. Brightness

  1.4.5. Short Pulse Duration

1.5. LaserTypes

Problems

2. Interaction of Radiation with Atoms and Ions

2.1. Introduction

2.2. Summary ofBlackbody RadiationTheory

  2.2.1. Modes of a RectangularCavity

  2 2.2. Rayleigh-Jeans and Planck Radiation Formula

  2.2.3. Planck’s Hypothesis and Field Quantization

2.3. Spontaneous Emission

  2.3.1. Semiclassical Approach

  2.3.2. Quantum Electrndynamics Approach

  2.3.3. Allowed and Forbidden Transitions

2.4. Absorption and Stimulated Emission

  2.4.1. Absorption and Stimulated Emission Rates

  2.4.2. Allowedand ForbiddenTtansitions

  2.4.3. Transition Cross Section,Absorption.and Gain Coe佑cient

  2.4.4. Einstein Thermndynamic Treatment

2.5. Line-Broadening Mechanisms

  2.5.1. Homogeneous Broadening

  2.5.2. Inhomogeneous Broadening

  2.5.3. Concluding Remarks

2.6. NonradiativeDecay and Energy Transfer

  2.6.l. Mechanisms Of Nonradiative Decay

  2.6.2. Combined EfieCtS of Radiative and Nonradiative Processes

2.7. Degenerate or Strongly Coupled Levels

  2.7.l. Degenerate Levels

  2.7.2. Strongly Coupled Lex,els

2.8. Saturation

  2.8.l. Saturation of Absorption:Homogeneous Line

  2.8.2. Gain Saturation:Homogeneous Line

  2.8.3. InhOmogeneously Broadened Line

2.9. Fluourescence Decay of an Optically Dense Medium

  2.9.1. Radiation Trapping

  2.9.2. Amplified Spontaneous Emission

2.10. Concluding Remarks

Problems

References

3. Energy Levels Radiative and Nonradiative Transitions in Molecules and Semiconductors

3.1. Molecules

  3.1.1. Energy Levels

  3.l.2. Level Occupation at Thermal Equilibrium

  3.1.3. Stimulated Transitions

  3.l.4. Radiative and Nonradiative Decay

3.2 Bulk Semiconductors

  3.2.1. Electronic States

  3.2.2. Density of States

  3.2.3. LeveI Occupation at Thermal Equilibrium

  3.2.4. Stimulated Transitions:Selection Rules

  3.2.5. Absorption andGain Coefficients

  3.2.6. Spontaneous Emission and Nonradiative Decay

  3.2.7. Concluding Remarks

3.3. Semiconductor Ouantum Wells

  3.3.1. Electronic States

  3.3.2. Density of States

  3.3.3 Level Occupation at Therrnal Equilibrium

  3.3.4. Stimulated Transitions:Selection Rules

  3.3.5. Absorption andGain Coefficients

  3.3.6. StrainedQuantumwells

3.4. Quantum Wires and Quantum Dots

3.5. Concluding Remarks

Problems

References

4. Ray and Wave Propagation through Optical Media

4.1. Introduction

4.2. Matrix Formulation OfGeometric Optics

4.3. Wave Reflection and Transmission at a Dielectric Interface

4.4. Multilayer Dielectric Coatings

4.5. Fabry-Perot Intefferometer

  4.5.1. Properties of a Fabry-perot Interferometer

  4.5.2. Fabry-Perot Interferometer as a Spectrometer

4.6. Diffraction Optics in the Pataxial Approximation

4.7. Gaussian Beams

  4.7.1. Lowest Order Mode

  4.7.2. Free-Space Propagation。

  4.7.3. Gaussian Beams andABCD Law

  4.7.4. Higher Order Modes

4.8. Conclusions

Problems

Refefences

5. Passive Opticaf Resonators

5.1. Introduction

  5.1.1. Plane Parallel(Fabry-Perot)Resonator

  5.1.2. Concentric(Spherical)Resonator

  5.1.3. Confocal Resonator

  5.1.4. Generalized Spherical Resonator

  5.1.5. Ring Resonator

5.2. Eigenmodes and Eigenvalues

5.3. Photon Lifetime and Cavity Q

5.4. Stability Condition

5.5. Stable Resonators

  5.5.1. Resonators with Infinite Aperture

   5.5.1.1. Eigenmodes

   5.5.1.2. Eigenvalues

   5.5.1.3. Standing and Traveling Waves in a Two-Mirror Resonator

  5.5.2. Effects of a Finite Aperture

  5.5.3. Dynamically and Mechanically Stable Resonators

5.6. Unstable Resonators

  5.6.1. Geometric Optics Description

  5.6.2. Wave Optics Description

  5.6.3. Advantages and Disadvantages of Hard-Edge Unstable Resonators

  5.6.4. Unstable Resonators with VariableReflectivity Mirrors

5.7. Concluding Remarks

Problems

  RefeFences

6. Pumping Processes

6.1. Introduction

6.2. Optical Pumping by an Incoherent Light Souse

  6.2.1. Pumping Systems

  6.2.2. Pump Light Absorption

  6.2.3. Pump Efficiency and Pump Rate

6.3. Laser Pumping

  6.3.1. Laser-Dlode Pumps

  6.3.2. Pump Ttansfer Systems

   6.3.2.1. Longitudinal Pumping

   6.3.2.2. Transverse Pumping

  6.3.3. Pump Rate and Pump Efficiency

  6.3.4. Threshold Pump Power for Four-Level and Quasi-Three-Level Lasers

  6.3.5. Comparison betweenDiode Pumping and Lamp Pumping

6.4. Electrical PUmping

  6.4.1.Electron Impact Excitation

   6.4.1.1. Electron Impact CrOSS Section

  6.4.2. Thermal and Drift Velocities

  6.4.3. Electron Energy Distribution

  6.4.4. lonization Balance Equation

  6.4.5. Scaling Lawsfor Electrical Discharge Lasers

  6.4.6. PumpRate and Pump Efficiency

6.5. Conclusions

Problems

References

7. Continuous Wate Laser Behavior

7.1. Introduction

7.2. Rate Equations

  7.2.1. Four-Level Laser

  7.2.2. Quasi-Three-Level Laser

7.3. Threshold Conditions andOutput Power:Four-Level Laser

  7.3.1. Space-Independent Model

  7.3.2. Space-Dependent Model

7.4. Threshold Condition and Output Power:Quasi-Three-Level Laser

  7.4.1. Space-Independent Model

  7.4.2. Space-Dependent Model

7.5. Optimum Output Coupling

7.6. Laser Tuning

7.7. Reasons for Multimode Oscillation

7.8. Single-Mode Selection

  7.8.1. Single-Transverse-Mode Selection

  7.8.2. Single-Longitudinal-Mode Selection

   7.8.2.1. Fabry-Perot Etalons as Mode-Selective Elements

   7.8.2.2. Single-Mode Selection in Unidirectional Ring Resonators

7.9. FrequencyPulling and LimittOMonochromaticity

7.10. Laser Frequency Fluctuations and Frequency Stabilization

7.11. Intensity Noise and Intensity Noise Reduction

7.12. Conclusions

Problems

Refefences

8. Transient Laser Behavior

8.1. Introduction

8.2. Relaxation Oscillations

8.3. Dynamic Instabilities and Pulsations in LaSetS

8.4. Q-Switching

  8.4.1. Dynamics ofthe Q-Switching Process

  8.4.2. Q-Switching Methods

   8.4.2.1. Electrooptical Q-Switching

   8.4.2.2. Rotating Prisms

   8.4.2.3. Acoustooptic Q-Switches

   8.4 2.4. SaturableAbsorberQ·Switch

  8.4.3. Operating Regimes

  8.4.4. Theory ofActive Q·Switching

8.5. Gain Switching

8.6. Mode Locking

  8.6.1. Frequency.Domain Description

  8 6 2. Time.Domain Picture

  8.6.3. Mode.Locking Methods

   8.6.3.1. Active Mode Locking

   8.6.3.2. Passive Mode Locking

 8.6.4. Role of Cavity Dispersion in Femtosecond Mode-Locked Lasers

   8.6.4.1. Phase Velocity.Group Velocity,and Group-Delay Dispersion

   8.6.4.2. Limitation On Pulse Duration Due to Group-Delay Dispersion

   8.6.4.3 Dispersion Compensation

   8.6.4.4. Soliton-Type Mode Locking

 8.6.5. Mode-Locking Regimes and Mode-Locking System

8.7. Cavity Dumping

8.8. Concluding Remarks

Problems

References

9. Solid-State,Dye,and Semiconductor Lasers

9.1. Introduction

9.2. Solid-State Lasers

  9.2.1. Ruby Laser

  9.2.2. Neodymium Lasers

   9.2.2.1. Nd:YAG Laser

   9.2.2.2. Nd:Glass Laser.

   9.2.2.3. Other Crystalline Hosts

  9.2.3. Yb:YAG Laser

  9.2.4. Er:YAG and Yb:Er:Glass Lasers

  9.2.5. Tm:Ho:YAG Laser

  9.2.6. Fiber Lasers

  9.2.7. Alexandrite Laser

  9.2.8. Titanium Sapphire Laser

  9.2.9. Cr:LiSAF and Cr:LiCAF Lasers

9.3. Dye Lasers

  9.3. 1.Photophysical Properties ofOrganic Dyes

  9.3.2. Characteristics of Dye Lasers

9.4. Semiconductor Lasets

  9.4.1.Principle of Semiconductor LaserOperation

  9.4.2. Homojunction Lasers

  9.4.3. Double-Heterostrocture Lasers

  9.4.4. Quantum Well Lasers

  9.4.5. Laser Devices and Performances

  9.4.6. Distributed Feedback andDistributed BraggReflector Lasers

  9.4.7. Vertical-Cavity Surface.Emitting Lasers

  9.4.8. Semiconductor Laser Applications

9.5.Conclusions

Problems.

Refefences

10. GasChemicalFree-Electonand X-Ray Lasers

10.1. Introduction

10.2. Gas Lasers

  10.2.1. Neutral Atom Lasers

   10.2.1.1. Helium Neon Laser

   10.2.1.2. Copper Vapor Laser

  10.2.2. Ion Lasers

   10.2.2.1. Argon Laser

   10.2.2.2. He-Cd Laser

  10.2.3. MolecularGas Lasers

   10.2.3.1. CO2. Laser

   10.2.3.2. CO Laser

   10.2.3.3. Nitrogen Laser

   10.2.3.4. Excimer Lasers

10.3. Chemical Lasers

10.4. Free-Electron Lasers

10.5. X-Ray Lasers

10.6. Concluding Remarks

Problems

References

11. Properties of Lasep Beams

11.1. Introduction

11.2. Monochromaticity

11.3. FirstOrder Coherence

  11.3.1. Degree of Spatial and Temporal Coherence

  11.3.2. Measurement of Spatial and Temporal Coherence

  11.3.3. Relation between Temporal Coherence and Monochromaticity

  11.3.4. Nonstationary Beams

  11.3.5. Spatial and,Temporal Coherence of Single-Mode and Multimode Lasers

  11.3.6. Spatial and Temporal Coherence of a Thermal Light Source

11.4. Directionality

  11.4.1. Beams with Perfect Spatial Coherence

  11.4.2. Beams with Partial Spatial Coherence

  11.4.3. The M2. Factor and the Spot Size Parameter of a Multimode Laser Beam

11.5. Laser Speckle

11.6. Brightness

11.7. Statistical Properties of Laser Light and Thermal Light

11.8. Comparison between Laser Light and Thermal Light

Problems

Refefences

12. Laser Beam Transformarion:Propagation Amplification Frequency Cornversion,Pulse Compression,and Pulse Expansion

12.1. Introduction

12.2. Spatial Transformation:Propagation of a Multimode Laser Beam

12.3. Amplitude Transformation:Laser Amplification

  12.3.1. Examples of Laser Amplifiers:Chirped-Pulse-Amplification

12.4. Frequency Conversion:Second-Harmonic Generation and Parametric Oscillation

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/4/2 3:28:46