动态域上的不连续动力学系统(精)豆瓣PDF电子书bt网盘迅雷下载电子书下载-霍普软件下载网

网站首页   软件下载   游戏下载   翻译软件   电子书下载   电影下载   电视剧下载   教程攻略   音乐专区

请输入您要查询的图书:

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

电子书 动态域上的不连续动力学系统(精)
分类 电子书下载
作者 罗朝俊
出版社 高等教育出版社
下载 暂无下载
介绍
编辑推荐

The book can serve as a reference book for researchers, advanced undergraduate and graduate students in mathematics, physics and mechanics.From such a theory, principles of dynamical system interactions without any physical connections are presented. Several discontinuous systems on time-varying domains are analyzed in detail to show how to apply the theory to practical problems.

内容推荐

Discontinuous Dynamical Systems on Time-varying Domains is the first monograph focusing on this topic. While in the classic theory of dynamical systems the focus is on dynamical systems on time-invariant domains, this book presents discontinuous dynamical systems on time-varying domains where the corresponding switchability of a flow to the time-varying boundary in discontinuous dynamical systems is discussed. From such a theory, principles of dynamical system interactions without any physical connections are presented. Several discontinuous systems on time-varying domains are analyzed in detail to show how to apply the theory to practical problems. The book can serve as a reference book for researchers, advanced undergraduate and graduate students in mathematics, physics and mechanics.

目录

1 Introduction

 1.1 Discontinuous systems

 1.2 Book layout

 References

2 Flow Switchability

 2.1 Discontinuous dynamic systems

 2.2 G-functions

 2.3 Passable flows

 2.4 Non-passable flows

 2.5 Tangential flows

 2.6 Switching bifurcations

 References

3 Transversality and Sliding Phenomena

 3.1 A controlled system

 3.2 Transversality conditions

 3.3 Mappings and predictions

 3.4 Periodic and chaotic motions

 References

4 A Frictional Oscillator on Time-varying Belt

 4.1 Mechanical model

 4.2 Analytical conditions

4.2.1 Equations of motion

4.2.2 Passable flows to boundary

4.2.3 Sliding flows on boundary

4.2.4 Grazing flows to boundary

 4.3 Generic mappings and force product criteria...

4.3.1 Generic mappings

4.3.2 Sliding flows and fragmentation

4.3.3 Grazing flows

 4.4 Periodic motions

  4.4.1 Mapping structures

  4.4.2 Illustrations

 4.5 Numerical simulations

 References

5 Two Oscillators with Impacts and Stick

 5.1 Physical problem

  5.1.1 Introduction to problem

  5.1.2 Equations of motion

 5.2 Domains and vector fields

  5.2.1 Absolute motion description

  5.2.2 Relative motion description

 5.3 Mechanism of stick and grazing

  5.3.1 Analytical conditions

  5.3.2 Physical interpretation

 5.4 Mapping structures and motions

  5.4.1 Switching sets and basic mappings

  5.4.2 Mapping equations

  5.4.3 Mapping structures

  5.4.4 Bifurcation scenario

 5.5 Periodic motion prediction

  5.5.1 Approach

  5.5.2 Impacting chatter

  5.5.3 Impacting chatter with stick

  5.5.4 Parameter maps

 5.6 Numerical illustrations

  5.6.1 Impacting chatter

  5.6.2 Impacting chatter with stick

  5.6.3 Further illustrations

 References

6 Dynamical Systems with Frictions

 6.1 Problem statement

 6.2 Switching and stick motions

  6.2.1 Equations of motion

  6.2.2 Analytical conditions

 6.3 Periodic motions

  6.3.1 Switching planes and mappings

  6.3.2 Mapping structures and motions

  6.3.3 Bifurcation scenario

 6.4 Numerical illustrations

6.4.1 Periodic motion without stick

6.4.2 Periodic motion with stick

6.4.3 Periodic motion with stick only

 References

7 Principles for System Interactions

 7.1 Two dynamical systems

7.1.1 Dynamical systems with interactions

7.1.2 Discontinuous description

7.1.3 Resultant dynamical systems

 7.2 Fundamental interactions

 7.3 Interactions with singularity

 7.4 Interactions with comer singularity

 References

Appendix

 A.1 Basic solution

 A.2 Stability and bifurcation

Index

截图
随便看

免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me