本书作者——Samuel Karlin,为斯坦福大学荣休教授,国际著名的应用概率学家,美国科学院院士,数理统计学会会士。1987年获冯·诺伊曼奖。在生灭过程中计算平稳分布的Karlin-McGregor定理即以他的名字命名。
本书堪称随机过程教材的典范,非常透彻地讨论了所有重要的主题,应用丰富,习题非常具有挑战性。本书是通往华尔街的必备读物。书中讨论的随机过程知识将为你理解期权定价打下坚实基础。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 随机过程高级教程(英文版)/图灵原版数学统计学系列 |
分类 | 科学技术-自然科学-数学 |
作者 | (美)卡林//泰勒 |
出版社 | 人民邮电出版社 |
下载 | ![]() |
简介 | 编辑推荐 本书作者——Samuel Karlin,为斯坦福大学荣休教授,国际著名的应用概率学家,美国科学院院士,数理统计学会会士。1987年获冯·诺伊曼奖。在生灭过程中计算平稳分布的Karlin-McGregor定理即以他的名字命名。 本书堪称随机过程教材的典范,非常透彻地讨论了所有重要的主题,应用丰富,习题非常具有挑战性。本书是通往华尔街的必备读物。书中讨论的随机过程知识将为你理解期权定价打下坚实基础。 内容推荐 本书是人民邮电出版社影印和翻译出版的《随机过程初级教程》的姊妹篇,内容包括马尔可夫链的代数方法、转移概率的比定理及应用、连续时间马尔可夫链、扩散过程、复合随机过程、独立同分布随机变理部分和波动理论、排队过程等很多主题。本书将理论与应用有机地结合在一起,取得了完美的平衡。 本书适用而广,可供数学、物理学、生物学、社会学、管理学和其他工程领域的理论研究者和实践者学习。 目录 Chapter 10 ALGEBRAIC METHODS IN MARKOV CHAINS 1. Prelimmanes 1 2. Relations of Eigenvalues and Recurrence Classes 3 3. Periodic Classes 6 4. Special Computational Methods in Markov Chains 10 5. Examples 14 6. Applications to Coin Tossing 18 Elementary Problems 23 Problems 25 Notes 30 References 30 Chapter 11 RATIO THEOREMS OF TRANSITION PROBABILITIES AND APPLICATIONS 1. Taboo Probabdiues 31 2. Ratio Theorems 33 3. Existence of Generalized Stationary Distributions 37 4. Interpretation of Generalized Stationary Distributions 42 5. Regular, Superregular, and Subregular Sequences for Markov Chains 44 6. Stopping Rule Problems 50 Elementary Problems 65 Problems 65 Notes 70 References 71 Chapter 12 SUMS OF INDEPENDENT RANDOM VARIABLES AS A MARKOV CHAIN 1. Recurrence Properties of Sums of Independent Random Variables 72 2. Local Limit Theorems 76 3. Right Regular Sequences for the Markov Chain {Sn} 83 4. The Discrete Renewal Theorem 93 Elementary Problems 95 Problems 96 Notes 99 References 99 Chapter 13 ORDER STATISTICS, POISSON PROCESSES, AND APPLICATIONS 1. Order Statistics and Their Relation to Poisson Processes 100 2. The Ballot Problem 107 3. Empirical Distribution Functions and Order Statistics 113 4. Some Limit Distributions for Empirical Distribution Functions 119 Elementary Problems 124 Problems 125 Notes 137 References 137 Chapter 14 CONTINUOUS TIME MARKOV CHAINS 1. Differentiability Properties of Transition Probabilities 138 2. Conservative Processes and the Forward and Backward Differential Equations 143 3. Construction of a Continuous Time Markov Chain from Its Infinitesimal Parameters 145 4. Strong Markov Property 149 Problems 152 Notes 156 References 156 Chapter 15 DIFFUSION PROCESSES 1. General Description 157 2. Examples of Diffusion 169 3. Differential Equations Associated with Certain Functionals 191 4. Some Concrete Cases of the Functional Calculations 205 5. The Nature of Backward and Forward Equations and Calculation of Stationary Measures 213 6. Boundary Classification for Regular Diffusion Processes 226 7. Some Further Characterization of Boundary Behavior 242 8. Some Constructions of Boundary Behavior of Diffusion Processes 251 9. Conditioned Diffusion Processes 261 10. Some Natural Diffusion Models with Killing 272 11. Semigroup Formulation of Continuous Time Markov Processes 285 12. Further Topics in the Semigroup Theory of Markov Processes and Applications to Diffusions 305 13. The Spectral Representation of the Transition Density for a Diffusion 330 14. The Concept of Stochastic Differential Equations 340 15. Some Stochastic Differential Equation Models 358 16. A Preview of Stochastic Differential Equations and Stochastic Integrals 368 Elementary Problems 377 Problems 382 Notes 395 References 395 Chapter 16 COMPOUNDING STOCHASTIC PROCESSES 1. Multidimensional Homogeneous Poisson Processes 398 2. An Application of Multidimensional Poisson Processes to Astronomy 404 3. Immigration and Population Growth 405 4. Stochastic Models of Mutation and Growth 408 5. One-Dimensional Geometric Population Growth 413 6. Stochastic Population Growth Model in Space and Time 416 7. Deterministic Population Growth with Age Distribution 419 8. A Discrete Aging Model 425 9. Compound Poisson Processes 426 Elementary Problems 441 Problems 41 Notes 450 References 450 Chapter 17 FLUCTUATION THEORY OF PARTIAL SUMS OF INDEPENDENT IDENTICALLY DISTRIBUTED RANDOM VARIABLES 1. The Stochastic Process of Partial Sums 451 2. An Equivalence Principle 453 3. Some Fundamental Identities of Fluctuation Theory and Direct Applications 459 4. The Important Concept of Ladder Random Variables 464 5. Proof of the Main Fluctuation Theory Identities 468 6. More Applications of Fluctuation Theory 473 Problems 484 Notes 488 References 488 Chapter 18 QUEUEING PROCESSES 1. General Description 489 2. The Simplest Queueing Processes(M/M/l) 490 3. Some General One-Server Queueing Models 492 4. Embedded Markov Chain Method Applied to the Queueing Model(M/GI/l) 497 5. Exponential Service Times(G/M/1) 504 6. Gamma Amval Dtstnbutlon and Generalizations(Ek/M/1) 506 7. Exponential Service with s Servers(GI/M/s) 511 8. The Virtual Waiting Time and the Busy Period 513 Problems 519 Notes 23 References 525 |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。