本书是一本经典的人工智能教材,全面阐述了人工智能的基础理论,有效结合了求解智能问题的数据结构以及实现的算法,把人工智能的应用程序应用于实际环境中,并从社会和哲学、心理学以及神经生理学角度对人工智能进行了独特的讨论。
PART Ⅰ
ARTIFICIAL INTELLIGENCE:ITS ROOTS AND SCOPE 1
1 AI:HISTORY AND APPLICATONS
PART Ⅱ
ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH
2 THE PREDICATE CALCULUS
3 STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH
4 HEURISTIC SEARCH
5 STOCHASTIC METHODS
6 CONTROL AND IMPLEMENTATION OF STATE SPACE SEARCH
PART Ⅲ
CAPTURING INTELLIGENCE:THE AI CHALLENGE
7 KNOWLEDGE REPRESENTATION
8 STRONG METHOD PROBLEM SOLVING
9 REASONING IN UNCERTAIN SITUATIONS
PART Ⅳ
MACHINE LEARNING
10 MACHINE LEARNING:SYMBOL-BASED
11 MACHINE LEARNING:CONNECTIONIST
12 MACHINE LEARNING:GENETIC AND EMERGENT
13 MACHINE LEARNING:PROBABILISTIC
PART Ⅴ
ADVANCED TOPICS FOR AI PROBLEM SOLVING
14 AUTOMATED REASONING
15 UNDERSTANDING NATURAL LANGUAGE
PART Ⅵ
EPILOGUE
16 ARTIFICIAL INTELLIGENCE AS EMPIRICAL ENQUIRY