吉利编著的《金融中的数值方法和优化》旨在为读者介绍金融计算工具—基本数值分析和计算技巧,如期权定价、并突出了模拟和优化的重要性,用许多章讲述投资组合保险和风险估计问题。特别地,有几章用于讲述优化探索和如何将他们应用于投资组合的选择、估值的校准和期权定价模型。这些具体的例子让读者学习了解决问题的具体步骤,以及将这些步骤举一反三。同时,这些应用使得本书的参考价值大大提高。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 金融中的数值方法和优化 |
分类 | 经济金融-金融会计-金融 |
作者 | (瑞士)吉利 |
出版社 | 世界图书出版公司 |
下载 | ![]() |
简介 | 编辑推荐 吉利编著的《金融中的数值方法和优化》旨在为读者介绍金融计算工具—基本数值分析和计算技巧,如期权定价、并突出了模拟和优化的重要性,用许多章讲述投资组合保险和风险估计问题。特别地,有几章用于讲述优化探索和如何将他们应用于投资组合的选择、估值的校准和期权定价模型。这些具体的例子让读者学习了解决问题的具体步骤,以及将这些步骤举一反三。同时,这些应用使得本书的参考价值大大提高。 目录 list of algorithms acknowledgements 1. introduction 1.1 about this book 1.2 principles 1.3 on software 1.4 on approximations and accuracy 1.5 summary: the theme of the book part one fundamentals 2. numerical analysis in a nutshell 2.1 computer arithmetic representation of real numbers machine precision example of limitations of floating point arithmetic 2.2 measuring errors 2.3 approxinaating derivatives with finite differences approximating first-order derivatives approximating second order derivatives partial derivatives .how to choose h truncation error for forward difference 2.4 numerical instability and ill-conditioning example ora numerically unstable algorithm example of an ill-conditioned problem 2.5 condition number of a matrix comments and examples 2.6 a primer on algorithmic and computational complexity 2.6.1 criteria for comparison order of complexity and classification 2.a operation count for basic linear algebra operations 3. linear equations and least squares problems choice of method 3. 1 direct methods 3.1.1 triangular systems 3.1.2 lu factorization 3.1.3 cholcsky factorization 3.1.4 qr decomposition 3.1.5 singular value decomposition 3.2 iterative methods 3.2.1 lacobi, gauss-seidel, and sor successive overrelaxation 3.2.2 convergence of iterative methods 3.2.3 general structure of algorithms for iterative methods 3.2.4 block iterative methods 3.3 sparse linear systems 3.3.1 tridiagonal systems 3.3.2 irregular sparse matriccs 3.3.3 structural properties of sparse matrices 3.4 the least squares problem 3.4.1 method of normal equations 3.4.2 least squares via qr factorization 3.4.3 l.east squares via svd decomposition 3.4.4 final remarks the backslash operator in matlab 4. finite difference methods 4.1 an example of a numerical solution a first numerical approximation a second numerical approximation 4.2 classification of differential equations 4.3 the biack-scholes equation 4.3.1 explicit, implicit, and o-methods 4.3.2 initial and boundary conditions and definition of the grid 4.3.3 implementation of the o-method with matlab 4.3.4 stability 4.3.5 coordinate transformation of space variables 4.4 american options 4.a a note on matlab's function spdiags 5. binomial trees 5.1 motivation matching moments 5.2 growing the tree 5.2.1 implementing a tree 5.2.2 vectorization 5.2.3 binomial expansion 5.3 early exercise 5.4 dividends 5.5 the greeks greeks from the tree part two simulation 6. generating random numbers 6.1 monte carlo methods and sampling 6.1.1 how it all began 6.1.2 financial applications 6.2 uniform random number generators 6.2.1 congruential generators 6.2.2 mersenne twister 6.3 nonuniform distributions 6.3.1 the inversion method 6.3.2 acceptance-rejection method 6.4 specialized methods for selected distributions 6.4.1 normal distribution 6.4.2 higher order momcnts and the cornish-fisher expansion 6.4.3 further distributions 6.5 sampling from a discrete set 6.5.1 discrete uniforal selection 6.5.2 roulette wheel selection 6.5.3 random permutations and shuffling 6.6 sampling errors---and how to reduce them 6.6.1 the basic problem 6.6.2 quasi-monte carlo 6.6.3 stratified sampling 6.6.4 variance reduction 6.7 drawing from empirical distributions 6.7.1 data randomization 6.7.2 bootstrap 6.8 controlled experiments and experimental design 6.8.1 replicability and ceteris paribus analysis 6.8.2 available random number generators in matlab 6.8.3 uniform random numbers from matlab's rand function 6.8.4 gaussian random numbers from matlab's randn function 6.8.5 remedies 7. modeling dependencies 7.1 transformation methods 7.1.1 linear correlation 7.1.2 rank correlation 7.2 markov chains 7.2.1 concepts 7.2.2 the metropolis algorithm 7.3 copula models 7.3.1 concepts 7.3.2 simulation using copulas 8. a gentle introduction to financial simulation 8.1 setting the stage 8.2 single-period simulations 8.2.1 terminal asset prices 8.2.2 1-over-n portfolios 8.2.3 european options 8.2.4 var of a covered put portfolio 8.3 simple price processes 8.4 processes with memory in the levels of returns 8.4.1 efficient versus adaptive markets 8.4.2 moving averages 8.4.3 autoregressive models 8.4.4 autoregressive moving average (arma) models 8.4.5 simulatingarma models 8.4.6 models with long-term memory 8.5 time-varying volatility 8.5.1 the concepts 8.5.2 autocorrelated time-varying volatility 8.5.3 simulating garch processes 8.5.4 selected further autoregressive volatility models 8.6 adaptive expectations and patterns in price processes 8.6.1 price-earnings models 8.6.2 models with learning 8.7 historical simulation 8.7.1 backtesting 8.7.2 bootstrap 8.8 agent-based models and complexity 9. financial simulation at work: some case studies 9.1 constant proportion portfolio insurance (cppi) 9.1.1 basic concepts 9.1.2 bootstrap 9.2 var estimation with extreme value theory 9.2.1 basic concepts 9.2.2 scaling the data 9.2.3 using extreme value theory 9.3 option pricing 9.3.1 modeling prices 9.3.2 pricing models 9.3.3 greeks 9.3.4 quasi-monte carlo part three optimization 10. optimization problems in finance 10.1 what to optimize? 10.2 solving the model 10.2.1 problems 10.2.2 classical methods and heuristics 10.3 evaluating solutions 10.4 examples portfolio optimization with alternative risk measures model selection robust/resistant regression agent-based models calibration of option -pricing models calibration of yield structure models 10.5 summary 11. basic methods 11.1 finding the roots off(x) = 0 11.1.1 a naive approach graphical solution random search 11.1.2 bracketing 11.1.3 bisection 11.1.4 fixed point method convergence 11.1.5 newton's method comments 11.2 classical unconstrained optimization convergence 11.3 unconstrained optimization in one dimension 11.3.1 newton's method 11.3.2 golden section search 11.4 unconstrained optimization in multiple dimensions 11.4.1 steepest descent method 11.4.2 newton's method 11.4.3 quasi-newton method 11.4.4 direct search methods 11.4.5 practical issues with matlab 11.5 nonlinear least squares 11.5.1 problem statement and notation 11.5.2 gauss-newton method 11.5.3 levenberg-marquardt method 11.6 solving systems of nonlinear equations f (x) = 0 1 1.6.1 general considerations 11.6.2 fixed point methods 11.6.3 newton's method 11.6.4 quasi-newton methods 11.6.5 further approaches 11.7 synoptic view of solution methods 12. heuristic methods in a nutshell 12.1 heuristics 12.2 trajectory methods 12.2.1 stochastic local search 12.2.2 simulated annealing 12.2.3 threshold accepting 12.2.4 tabu search 12.3 population-based methods 12.3.1 genetic algorithms 12.3.2 differential evolution 12.3.3 particle swarm optimization 12.3.4 ant colony optimization 12.4 hybrids 12.5 constraints 12.6 the stochastics of heuristic search 12.6.1 stochastic solutions and computational resources 12.6.2 an illustrative experiment 12.7 general considerations 12.7.1 what technique to choose? 12.7.2 efficient implementations 12.7.3 parameter settings 12.8 summary 12.a implementing heuristic methods with matlab 12.a.1 threshold accepting 12.a.2 genetic algorithm 12.a.3 differential evolution 12.a.4 particle swarm optimization 13. portfolio optimization 13.1 the investment problem 13.2 the dassical case: mean-variance optimization 13.2.1 the model 13.2.2 solving the model 13.2.3 mean-variance models 13.2.4 true, estimated, and realized frontiers 13.2.5 repairing matrices 13.3 heuristic optimization of one-period models 13.3.1 asset selection with local search 13.3.2 scenario optimization with threshold accepting 13.3.3 examples 13.3.4 diagnostics 13.a more implementation issues in r 13.a.1 scoping rules in r and objective functions 13.a.2 vectorized objective functions 14. econometric models 14.1 term structure models 14.1.1 yield curves 14.1.2 the nelson-siegel model 14.1.3 calibration strategies 14.1.4 experiments 14.2 robust and resistant regression 14.2.1 the regression model 14.2.2 estimation 14.2.3 an example 14.2.4 numerical experiments 14.2.5 final remarks 14.a maximizing the sharpe ratio 15. calibrating option pricing models 15.1 implied volatility with black-scholes the smile 15.2 pricing with the characteristic function 15.2.1 a pricing equation 15.2.2 numerical integration 15.3 calibration 15.3.1 techniques 15.3.2 organizing the problem and implementation 15.3.3 two experiments 15.4 final remarks 15.a quadrature rules for infinity bibliography index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。