概率论(第2版)豆瓣PDF电子书bt网盘迅雷下载电子书下载-霍普软件下载网

网站首页   软件下载   游戏下载   翻译软件   电子书下载   电影下载   电视剧下载   教程攻略   音乐专区

请输入您要查询的图书:

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

电子书 概率论(第2版)
分类 电子书下载
作者 A.N.Shiryaev
出版社 世界图书出版公司
下载 暂无下载
介绍
编辑推荐

这是一套公认的概率论经典教科书,可供高年级大学生和研究生使用,同时也是概率论和统计学方面的专家,学者经常使用的参考书。在这套书的第4版中增加了距离空间测定,随机游动,布朗运动及不变原理,后两部门尤为精彩。

本书为其中一册。

目录

Preface to the Second Edition

Preface to the First Edition

Introduction

CHAPTER I

Elementary Probability Theory

1. Probabilistic Model ofan Experiment with a Finite Number of Outcomes

2. Some Classical Models and Distributions

3. Conditional Probability. Independence

4. Random Variables and Their Properties

5. The Bernoulli Scheme. I. The Law of Large Numbers

6. The Bernoulli Scheme. II. Limit Theorems (Local, De Moivre-Laplaee, Poisson)

7. Estimating the Probability of Success in the Bernoulli Scheme

8. Conditional Probabilities and Mathematical Expectations with Respect to Decompositions

9. Random Walk. I. Probabilities of Ruin and Mean Duration in Coin Tossing

10. Random Walk. II. Reflection Principle. Arcsine Law

11. Martingales. SomeApplications to the Random Walk

12. Markov Chains. Ergodic Theorem. Strong Markov Property

CHAPTER II

MathematiCal Foundations of Probability Theory

1. Probabilistic Model for an Experiment with Infinitely Many Outcomes. Kolmogorov's Axioms

2. Algebras and-algebras. Measurable Spaces

3. Methods of Introducing Probability Measures on Measurable Spaces

4. Random Variables. I

5. Random Elements

6. Lebesgue Integral. Expectation

7. Conditional Probabilities and Conditional Expectations with Respect to a-Algebra

8. Random Variables. II

9. Construction of a Process with Given Finite-Dimensional Distribution

10. Various Kinds of Convergence of Sequences of Random Variables

11. The Hilbert Space of Random Variables with Finite Second Moment

12. Characteristic Functions

13. Gaussian Systems

CHAPTER III

Convergence of Probability Measures. Central Limit

Theorem

1. Weak Convergence of Probability Measures and Distributions

2. Relative Compactness and Tightness of Families of Probability Distributions

3. Proofs of Limit Theorems by the Method of Characteristic Functions

4. Central Limit Theorem for Sums of Independent Random Variables. I. The Lindeberg Condition

5. Central Limit Theorem for Sums of Independent Random Variables. II. Nonclassical Conditions

6. Infinitely Divisible and Stable Distributions

7. Metrizability of Weak Convergence

8. On the Connection of Weak Convergence of Measures with Almost Sure Convergence of Random Elements ("Method of a Single Probability Space")

9. The Distance in Variation between Probability Measures.

 Kakutani-Hellinger Distance and Hdlinger Integrals. Application to

 Absolute Continuity and Singularity of Measures

10. Contiguity and Entire Asymptotic Separation of Probability Measures

11. Rapidity of Convergence in the Central Limit Theorem

12. Rapidity of Convergence in Poisson's Theorem

CHAPTER IV

Sequences and Sums of Independent Random Variables

1. Zero-or-One Laws

2. Convergence of Series

3. Strong Law of Large Numbers

4. Law of the Iterated Logarithm

5. Rapidity of Convergence in the Strong Law of Large Numbers and in the Probabilities of Large Deviations

CHAPTER V

Stationary (Strict Sense) Random Sequences and

Ergodic Theory

1. Stationary (Strict Sense) Random Sequences. Measure-Preserving Transformations

2. Ergodicity and Mixing

3. Ergodic Theorems

CHAPTER VI

Stationary (Wide Sense) Random Sequences. L2 Theory

l. Spectral Representation of the Covariance Function

2. Orthogonal Stochastic Measures and Stochastic Integrals

3. Spectral Representation of Stationary (Wide Sense) Sequences

4. Statistical Estimation of the Covariance Function and the Spectral Density

5. Wold's Expansion

6. Extrapolation. Interpolation and Filtering

7. The Kalman-Bucy Filter and Its Generalizations

CHAPTER VII

Sequences of Random Variables that Form Martingales

1. Definitions of Martingales and Related Concepts

2. Preservation of the Martingale Property Under Time Change at a Random Time

3. Fundamental Inequalities

4. General Theorems on the Convergence of Submartingales and Martingales

5. Sets of Convergence of Submartingales and Martingales

6. Absolute Continuity and Singularity of Probability Distributions

7. Asymptotics of the Probability of the Outcome of a Random Walk with Curvilinear Boundary

8. Central Limit Theorem for Sums of Dependent Random Variables

9. Discrete Version of It6's Formula

10. Applications to Calculations of the Probability of Ruin in Insurance

CHAPTER VIII

Sequences of Random Variables that Form Markov Chains

1. Definitions and Basic Properties

2. Classification of the States of a Markov Chain in Terms of Arithmetic Properties of the Transition Probabilities p])

3. Classification of the States of a Markov Chain in Terms of Asymptotic Properties of the Probabilities pl')

4. On the Existence of Limits and of Stationary Distributions

5. Examples

Historical and Bibliographical Notes

References

Index of Symbols

Index

截图
随便看

免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me