本书为广大学生和人工智能开发人员提供了学习人工智能相关概念的一种新思路。
书中包含人工智能在多个领域的许多最新应用,这些领域包括游戏程序设计、群体智能、智能Agent、神经网络、人工免疫系统、遗传算法、模式识别、数值优化以及数据挖掘等。本书还讨论了从早期的LISP语言到近期的Python语言等多种人工智能语言。书中不仅包括了人工智能的理论和主要课题,还介绍了从数据输入到转换再到数据输出(即算法的使用)的实际需要的信息。因为传统的人工智能概念目前仅仅表示算法的各种类型,因此需要用一种不同的方法来介绍人工智能算法。这种“传感器-算法-效应器”的方法为这些算法提供了一个基础环境,能够帮助学生和人工智能从业者更好地理解它们,从而更好地应用这些算法。
本书包含当前人工智能(AI)研究的主要内容,尤其强调实际应用,涉及数据挖掘等许多最新应用领域。全书共13章,分别讲述了AI的历史、不用知识的搜索、用知识的搜索、AI与博弈、知识表示、机器学习、演化计算、神经网络I、机器人学与AI、智能Agent、来自生物的模型与混合模型以及AⅡ语言。本书给出了算法的较详细实现,与现有的以理论基础为核心的大多数经典人工智能著作相比,本书有自身的鲜明特色,且内容与国内人工智能课程的教学内容吻合,尤其有利于培养学生解决人工智能实际问题的能力。
本书适合高等学校计算机、自动化等信息学科的本科生和研究生阅读,也适合广大人工智能爱好者自学使用,本书也能为人工智能研究人员了解各种算法的设计思路和具体实现框架提供参考。
Chapter 1 The History of AI
What is Intelligence?
The Search for Mechanical Intelligence
The Very Early Days(the early 1950s)
Artificial Intelligence Emerges as a Field
AI's Winter
AI Re-emerges
AI Inter-Disciplinary R&D
Systems Approach
Overview of this Book
Chapter Summary
References
Resources
Exercises
Chapter 2 Uninformed Search
Search and AI
Classes of Search
General State Space Search
Trees, Graphs, and Representation
Uninformed Search
Improvements
Algorithm Advantages
Chapter Summary
Algorithms Summary
References
Exercises
Chapter 3 Informed Search
Informed Search
Best-First Search(Best-FS)
A* Search
Hill-Climbing Search
Simulated Annealing(SA)
Tabu Search
Constraint Satisfaction Problems(CSP)
Constraint Satisfaction Algorithms
Chapter Summary
Algorithms Summary
References
Resources
Exercises
Chapter 4 AI and Games
Two-Player Games
The Minimax Algorithm
Classical Game AI
Video Game AI
Chapter Summary
References
Resources
Exercises
Chapter 5 Knowledge Representation
Introduction
Types of Knowledge
The Role of Knowledge
Semantic Networks
Frames
Propositional Logic
First-Order Logic(Predicate Logic)
Semantic Web
Computational Knowledge Discovery
Ontology
Communication of Knowledge
Chapter Summary
References
Resources
Exercises
Chapter 6 Machine Learning
Machine-Learning Algorithms
Chapter Summary
Resources
Exercises
Chapter 7 Evolutionary Computation
Short History of Evolutionary Computation
Biological Motivation
Genetic Algorithms (GA)
Genetic Programming (GP)
Evolutionary Strategies (ES)
Differential Evolution (DE)
Particle Swarm Optimization (PSO)
Evolvable Hardware
Chapter Summary
References
Resources
Exercises
Chapter 8 Neural Networks I
Short History of Neural Networks
Biological Motivation
Fundamentals of Neural Networks
The Perceptron
Least-Mean-Square (LMS) Learning
Learning with Backpropagation
Probabilistic Neural Networks (PNN)
Other Neural Network Architectures
Tips for Building Neural Networks
Chapter Summary
References
Exercises
Chapter 9 Neural Networks II
Unsupervised Learning
Hebbian Learning
Simple Competitive Learning
K-Means Clustering
Adaptive Resonance Theory (ART)
Hopfield Auto-Associative Model
Chapter Summary
References
Exercises
Chapter 10 Robotics and AI
Introduction to Robotics
Braitenburg Vehicles
Natural Sensing and Control
Perception with Sensors
Actuation with Effectors
Robotic Control Systems
Simple Control Architectures
Movement Planning
Group or Distributed Robotics
Robot Programming Languages
Robot Simulators
Chapter Summary
References
Resources
Exercises
Chapter 11 Intelligent Agents
Anatomy of an Agent
Agent Properties and AI
Agent Environments
Agent Taxonomies
Agent Architectures
Agent Languages
Agent Communication
ACL (FIPA Agent Communication Language)
Chapter Summary
Resources
References
Exercises
Chapter 12 Biologically Inspired and Hybrid Models
Cellular Automata (CA)
Artificial Immune Systems
Artificial Life
Fuzzy Systems
Evolutionary Neural Networks
Ant Colony Optimization (ACO)
Affective Computing
Resources
Chapter 13 The Languages of AI
Language Taxonomy
Languages of AI
Other Languages
Chapter Summary
References
Resources
Exercises