本书为全英文版,是一本备受推崇的有关偏微分方程数值技术的教科书。本书分为两部分,分别列入Springer《应用数学丛书》之22卷和33卷,内容取自作者在克罗拉多州立大学所开研究生课程的讲义。本书讲解了求解偏微分方程的标准数值方法,也提供了该领域的最新技术。书中透彻地分析了各种方法的性质,严格地讨论了稳定性问题,提供了各种层次的例题和习题。全书结构清晰有序,叙述言简意赅,是数学、工程学学生学习的首选入门教材。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 偏微分方程的数值方法 |
分类 | 科学技术-自然科学-数学 |
作者 | J.W.Thomas |
出版社 | 世界图书出版公司 |
下载 | ![]() |
简介 | 编辑推荐 本书为全英文版,是一本备受推崇的有关偏微分方程数值技术的教科书。本书分为两部分,分别列入Springer《应用数学丛书》之22卷和33卷,内容取自作者在克罗拉多州立大学所开研究生课程的讲义。本书讲解了求解偏微分方程的标准数值方法,也提供了该领域的最新技术。书中透彻地分析了各种方法的性质,严格地讨论了稳定性问题,提供了各种层次的例题和习题。全书结构清晰有序,叙述言简意赅,是数学、工程学学生学习的首选入门教材。 内容推荐 本书分为两卷(或称为两部分),分别列入Springer《应用数学丛书》之22卷和33卷,内容取自作者在克罗拉多州立大学所开研究生课程的讲义。该课程讲授偏微分方程的差分方法,授课的对象为应用数学和工程专业的研究生。 本书的特点是强调实际上机操作,阅读本书需要具备一定的偏微分方程基础知识和编程能力。第1卷《偏微分方程的数值方法——有限差分法》(Numerical Partial Differential Equations:Finite Difference Methods)已购权影印出版,编号为WB3299。 目录 Series Preface Preface Preface to Part 1 Contents of Part 1 8 Stability of Initial-Boundary-Value Schemes 8.1 Introduction 8.2 Stability 8.2.1 Stability: An Easy Case 8.2.2 Stability: Another Easy Case 8.2.3 GKSO: General Theory 8.2.4 Left Quarter Plane Problems 8.3 Constructing Stable Difference Schemes 8.4 Consistency and Convergence 8.4.1 Norms and Consistency 8.4.2 Consistency of Numerical Boundary Conditions 8.4.3 Convergence Theorem: Gustafsson 8.5 Schemes Without Numerical Boundary Conditions 8.6 Parabolic Initial-Boundary-Value Problems 9 Conservation Laws 9.1 Introduction 9.2 Theory of Scalar Conservation Laws 9.2.1 Shock Formation 9.2.2 Weak Solutions 9.2.3 Discontinuous Solutions 9.2.4 The Entropy Condition 9.2.5 Solution of Scalar Conservation Laws 9.3 Theory of Systems of Conservation Laws 9.3.1 Solutions of Riemann Problems 9.4 Computational Interlude VI 9.5 Numerical Solution of Conservation Laws 9.5.1 Introduction 9.6 Difference Schemes for Conservation Laws 9.6.1 Consistency 9.6.2 Conservative Schemes 9.6.3 Discrete Conservation 9.6.4 The Courant-Friedrichs-Lewy Condition 9.6.5 Entropy 9.7 Difference Schemes for Scalar Conservation Laws 9.7.1 Definitions 9.7.2 Theorems 9.7.3 Godunov Scheme 9.7.4 High Resolution Schemes 9.7.5 Flux-Limiter Methods 9.7.6 Slope-Limiter Methods 9.7.7 Modified Flux Method 9.8 Difference Schemes for K-System Conservation Laws 9.9 Godunov Schemes 9.9.1 Godunov Schemes for Linear K-System Conservation Laws 9.9.2 Godunov Schemes for K-System Conservation Laws 9.9.3 Approximate Riemann Solvers: Theory 9.9.4 Approximate Riemann Solvers: Applications 9.10 High Resolution Schemes for Linear K-System Conservation Laws 9.10.1 Flux-Limiter Schemes for Linear K-System Conservation Laws 9.10.2 Slope-Limiter Schemes for Linear K-System Conservation Laws 9.10.3 A Modified Flux Scheme for Linear K-System Conservation Laws 9.10.4 High Resolution Schemes for K-System Conservation Laws 9.11 Implicit Schemes 9.12 Difference Schemes for Two Dimensional Conservation Law 9.12.1 Some Computational Examples 9.12.2 Some Two Dimensional High Resolution Schemes 9.12.3 The Zalesak-Smolarkiewicz Scheme 9.12.4 A Z-S Scheme for Nonlinear Conservation Laws 9.12.5 Two Dimensional K-System Conservation Laws 10 Elliptic Equations 10.1 Introduction 10.2 Solvability of Elliptic Difference Equations: Dirichlet Boundary Conditions 10.3 Convergence of Elliptic Difference Schemes: Dirichlet Boundary Conditions 10.4 Solution Schemes for Elliptic Difference Equations: Introduction 10.5 Residual Correction Methods 10.5.1 Analysis of Residual Correction Schemes 10.5.2 Jacobi Relaxation Scheme 10.5.3 Analysis of the Jacobi Relaxation Scheme 10.5.4 Stopping Criteria 10.5.5 Implementation of the Jacobi Scheme 10.5.6 Gauss-Seidel Scheme 10.5.7 Analysis of the Gauss-Seidel Relaxation Scheme 10.5.8 Successive Overrelaxation Scheme 10.5.9 Elementary Analysis of SOR Scheme 10.5.10 More on the SOR Scheme 10.5.11 Line Jacobi, Gauss-Seidel and SOR Schemes 10.5.12 Approximating Wb: Reality 10.6 Elliptic Difference Equations: Neumann Boundary Conditions 10.6.1 First Order Approximation 10.6.2 Second Order Approximation 10.6.3 Second Order Approximation on an Offset Grid 10.7 Numerical Solution of Neumann Problems 10.7.1 Introduction 10.7.2 Residual Correction Schemes 10.7.3 Jacobi and Gauss-Seidel Iteration 10.7.4 SOR Scheme 10.7.5 Approximation of Wb 10.7.6 Implementation: Neumann Problems 10.8 Elliptic Difference Equatidns: Mixed Problems 10.8.1 Introduction 10.8.2 Mixed Problems: Solvability 10.8.3 Mixed Problems: Implementation 10.9 Elliptic Difference Equations: Polar Coordinates 10.10 Multigrid 10.10.1 Introduction 10.10.2 Smoothers 10.10.3 Grid Transfers 10.10.4 Multigrid Algorithm 10.11 Computational Interlude VII 10.11.1 Blocking Out: Irregular Regions 10.11.2 HW0.0.4 10.12 ADI Schemes 10.13 Conjugate Gradient Scheme 10.13.1 Preconditioned Conjugate Gradient Scheme 10.13.2 SSOR as a Preconditioner 10.13.3 Implementation 10.14 Using Iterative Methods to Solve Time Dependent Problems 10.15 Using FFTs to Solve Elliptic Problems 10.16 Computational Interlude VIII 11 Irregular Regions and Grids 11.1 Introduction 11.2 Irregular Geometries 11.2.1 Blocking Out 11.2.2 Map the Region 11.2.3 Grid Generation 11.3 Grid Refinement 11.3.1 Grid Refinement: Explicit Schemes for Hyperbolic Problems 11.3.2 Grid Refinement for Implicit Schemes 11.4 Unstructured Grids References Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。