网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 金融随机分析(第2卷)
分类 经济金融-金融会计-金融
作者 (美)施瑞伍
出版社 世界图书出版公司
下载
简介
编辑推荐

本书是一本英文影印版的随机分析在定量经济学领域中应用方面的著名教材。本书共分2卷。第1卷主要包括随机分析的基础性知识和离散时间模型;第2卷主要包括连续时间模型和该模型经济学中的应用。就其内容而言,第2卷有较为实际的可操作性的定量经济学内容,同时也包含了较为完整的随机微分方程理论。

内容推荐

这是一套随机分析在定量经济学领域中应用方面的著名教材,作者在该领域享有盛誉,全书共分2卷。第1卷主要包括随机分析的基础性知识和离散时间模型;第2卷主要包括连续时间模型和该模型经济学中的应用。就其内容而言,第2卷有较为实际的可操作性的定量经济学内容,同时也包含了较为完整的随机微分方程理论。本书各章有习题,适用于掌握微积积分基础知识的大学高年级本科生和硕士研究生。

目录

1 General Probability Theory

 1.1 Infinite Probability Spaces

 1.2 Random Variables and Distributions

 1.3 Expectations

 1.4 Convergence of Integrals

 1.5 Computation of Expectations

 1.6 Change of Measure

 1.7 Summary

 1.8 Notes

 1.9 Exercises

2 Information and Conditioning

 2.1 Information and a-algebras

 2.2 Independence

 2.3 General Conditional Expectations

 2.4 Summary

 2.5 Notes

 2.6 Exercises

3 Brownian Motion

 3.1 Introduction

 3.2 Scaled Random Walks

  3.2.1 Symmetric Random Walk

  3.2.2 Increments of the Symmetric Random Walk

3.2.3 Martingale Property for the Symmetric Random Walk

3.2.4 Quadratic Variation of the Symmetric Random Walk

3.2.5 Scaled Symmetric Random Walk

  3.2.6 Limiting Distribution of the Scaled Random Walk

  3.2.7 Log-Normal Distribution as the Limit of the Binomial Model

 3.3 Brownian Motion

  3.3.1 Definition of Brownian Motion

  3.3.2 Distribution of Brownian Motion

  3.3.3 Filtration for Brownian Motion

  3.3.4 Martingale Property for Brownian Motion

 3.4 Quadratic Variation

  3.4.1 First-Order Variation

  3.4.2 Quadratic Variation

  3.4.3 Volatility of Geometric Brownian Motion

 3.5 Markov Property

 3.6 First Passage Time Distribution

 3.7 Reflection Principle

  3.7.1 Reflection Equality

  3.7.2 First Passage Time Distribution

  3.7.3 Distribution of Brownian Motion and Its Maximum

 3.8 Summary

 3.9 Notes

 3.10 Exercises

4  Stochastic Calculus

 4.1 Introduction

 4.2 Ito's Integral for Simple Integrands

  4.2.1 Construction of the Integral

  4.2.2 Properties of the Integral

 4.3 Ito's Integral for General Integrands

 4.4 Ito-Doeblin Formula

  4.4.1 Formula for Brownian Motion

  4.4.2 Formula for It5 Processes

  4.4.3 Examples

 4.5 Black-Scholes-Merton Equation

  4.5.1 Evolution of Portfolio Value

  4.5.2 Evolution of Option Value

  4.5.3 Equating the Evolutions

  4.5.4 Solution to the Black-Scholes-Merton Equation

  4.5.5 The Greeks

  4.5.6 Put-Call Parity

 4.6 Multivariable Stochastic Calculus

  4.6.1 Multiple Brownian Motions

  4.6.2 Ito-Doeblin Formula for Multiple Processes

  4.6.3 Recognizing a Brownian Motion

 4.7 Brownian Bridge

  4.7.1 Gaussian Processes

  4.7.2 Brownian Bridge as a Gaussian Process

  4.7.3 Brownian Bridge as a Scaled Stochastic Integral

  4.7.4 Multidimensional Distribution of the Brownian Bridge

  4.7.5 Brownian Bridge as a Conditioned Brownian Motion

 4.8 Summary

 4.9 Notes

 4.10 Exercises

5 Risk-Neutral Pricing

 5.1 Introduction

 5.2 Risk-Neutral Measure

  5.2.1 Girsanov's Theorem for a Single Brownian Motion..

  5.2.2 Stock Under the Risk-Neutral Measure

  5.2.3 Value of Portfolio Process Under the Risk-Neutral Measure

  5.2.4 Pricing Under the Risk-Neutral Measure

  5.2.5 Deriving the Black-Scholes-Merton Formula

 5.3 Martingale Representation Theorem

  5.3.1 Martingale Representation with One Brownian Motion

  5.3.2 Hedging with One Stock

 5.4 Fundamental Theorems of Asset Pricing

  5.4.1 Girsanov and Martingale Representation Theorems.

  5.4.2 Multidimensional Market Model

5.4.3 Existence of the Risk-Neutral Measure

5.4.4 Uniqueness of the Risk-Neutral Measure

 5.5 Dividend-Paying Stocks

5.5.1 Continuously Paying Dividend

5.5.2 Continuously Paying Dividend with Constant Coefficients

5.5.3 Lump Payments of Dividends

5.5.4 Lump Payments of Dividends with Constant Coefficients

 5.6 Forwards and Futures

5.6.1 Forward Contracts

5.6.2 Futures Contracts

5.6.3 Forward-Futures Spread

 5.7 Summary

 5.8 Notes

 5.9 Exercises

6 Connections with Partial Differential Equations

 6.1 Introduction

 6.2 Stochastic Differential Equations

 6.3 The Markov Property

 6.4 Partial Differential Equations

 6.5 Interest Rate Models

 6.6 Multidimensional Fcynman-Kac Theorems

 6.7 Summary

 6.8 Notes

 6.9 Exercises

7 Exotic Options

 7.1 Introduction

 7.2 Maximum of Brownian Motion with Drift

 7.3 Knock-out Barrier Options

  7.3.1 Up-and-Out Call

  7.3.2 Black-Scholes-Merton Equation

  7.3.3 Computation of the Price of the Up-and-Out Call

 7.4 Lookback Options

  7.4.1 Floating Strike Lookback Option

  7.4.2 Black-Scholes-Merton Equation

  7.4.3 Reduction of Dimension

  7.4.4 Computation of the Price of the Lookback Option

 7.5 Asian Options

  7.5.1 Fixed-Strike Asian Call

  7.5.2 Augmentation of the State

  7.5.3 Change of Numeraire

 7.6 Summary

 7.7 Notes

 7.8 Exercises

8  American Derivative Securities

 8.1 Introduction

 8.2 Stopping Times

 8.3 Perpetual American Put

  8.3.1 Price Under Arbitrary Exercise

  8.3.2 Price Under Optimal Exercise

  8.3.3 Analytical Characterization of the Put Price

  8.3.4 Probabilistic Characterization of the Put Price

 8.4 Finite-Expiration American Put

  8.4.1 Analytical Characterization of the Put Price

  8.4.2 Probabilistic Characterization of the Put Price

 8.5 American Call

  8.5.1 Underlying Asset Pays No Dividends

  8.5.2 Underlying Asset Pays Dividends

 8.6 Summary

 8.7 Notes

 8.8 Exercises

9 Change of Numeraire

 9.1 Introduction

 9.2 Numeraire

 9.3 Foreign and Domestic Risk-Neutral Measures

9.3.1 The Basic Processes

9.3.2 Domestic Risk-Neutral Measure

9.3.3 Foreign Risk-Neutral Measure

9.3.4 Siegel's Exchange Rate Paradox

9.3.5 Forward Exchange Rates

9.3.6 Garman-Kohlhagen Formula

9.3.7 Exchange Rate Put-Call Duality

 9.4 Forward Measures

9.4.1 Forward Price

9.4.2 Zero-Coupon Bond as Numeraire

9.4.3 Option Pricing with a Random Interest Rate

 9.5 Summary

 9.6 Notes

 9.7 Exercises

10 Term-Structure Models

 10.1 Introduction

 10.2 Affine-Yield Models

10.2.1 Two-Factor Vasicek Model

10.2.2 Two-Factor CIR Model

10.2.3 Mixed Model

 10.3 Heath-Jarrow-Morton Model

10.3.1 Forward Rates

10.3.2 Dynamics of Forward Rates and Bond Prices

10.3.3 No-Arbitrage Condition

10.3.4 HJM Under Risk-Neutral Meaaure

10.3.5 Relation to Affine-Yield Models

10.3.6 Implementation of HJM

 10.4 Forward LIBOR Model

10.4.1 The Problem with Forward Rates

10.4.2 LIBOR and Forward LIBOR

10.4.3 Pricing a Backset LIBOR Contract

10.4.4 Black Caplet Formula

10.4.5 Forward LIBOR and Zero-Coupon Bond Volatilities ..

10.4.6 A Forward LIBOR Term-Structure Model

 10.5 Summary

 10.6 Notes

 10.7 Exercises

11 Introduction to Jump Processes

 11.1 Introduction

 11.2 Poisson Process

  11.2.1 Exponential Random Variables

  11.2.2 Construction of a Poisson Process

  11.2.3 Distribution of Poisson Process Increments

  11.2.4 Mean and Variance of Poisson Increments

  11.2.5 Martingale Property

 11.3 Compound Poisson Process

  11.3.1 Construction of a Compound Poisson Process

  11.3.2 Moment-Generating Function

 11.4 Jump Processes and Their Integrals

  11.4.1 Jump Processes

  11.4.2 Quadratic Variation

 11.5 Stochastic Calculus for Jump Processes

  11.5.1 Ito-Doeblin Fermula for One Jump Process

  11.5.2 Ith-Doeblin Formula for Multiple Jump Processes

 11.6 Change of Measure

  11.6.1 Change of Measure for a Poisson Process

  11.6.2 Change of Measure for a Compound Poisson Process

  11.6.3 Change of Measure for a Compound Poisson Process and a Brownian Motion

 11.7 Pricing a European Call in a Jump Model

  11.7.1 Asset Driven by a Poisson Process

  11.7.2 Asset Driven by a Brownian Motion and a Compound Poisson Process

 11.8 Summary

 11.9 Notes

 11.10 Exercises

A Advanced Topics in Probability Theory

 A.1 Countable Additivity

 A.2 Generating a-algebras

 A.3 Random Variable with Neither Density nor Probability MassFunction

B Existence of Conditional Expectations

C Completion of the Proof of the Second Fundamental

Theorem of Asset Pricing

References

Index

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/1/19 11:30:59