本书由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,作为一部优秀的教材,内容不仅涵盖了分析学的基本内容和技巧,还介绍了一些从事其他领域的研究工作所必需的基础知识。此外,教材中的大量习题,能够进一步拓展思维,从而易于更加深入地了解这些内容背后的真实想法。本书适用于理工类专业及相关专业的研究生。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 实分析/数学经典英文教材系列 |
分类 | 科学技术-自然科学-数学 |
作者 | Elias M.Stein//Rami Shakarchi |
出版社 | 世界图书出版公司 |
下载 | |
简介 | 编辑推荐 本书由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,作为一部优秀的教材,内容不仅涵盖了分析学的基本内容和技巧,还介绍了一些从事其他领域的研究工作所必需的基础知识。此外,教材中的大量习题,能够进一步拓展思维,从而易于更加深入地了解这些内容背后的真实想法。本书适用于理工类专业及相关专业的研究生。 内容推荐 本书由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。关于本书的详细介绍,请见“影印版前言”。 本书已被哈佛大学和加利福尼亚理工学院选为教材。与本书相配套的教材《傅立叶分析导论》和《复分析》也已影印出版。 目录 Foreword Introduction 1 Fourier series: completion 2 Limits of continuous functions 3 Length of curves 4 Differentiation and integration 5 The problem of measure Chapter 1. Measure Theory 1 Preliminaries 2 The exterior measure 3 Measurable sets and the Lebesgue measure 4 Measurable functions 4.1 Definition and basic properties 4.2 Approximation by simple functions or step functions 4.3 Littlewood's three principles 5* The Brunn-Minkowski inequality 6 Exercises 7 Problems Chapter 2. Integration Theory 1 The Lebesgue integral: basic properties and convergence theorems 2 The space L1 of integrable functions 3 Fubini's theorem 3.1 Statement and proof of the theorem 3.2 Applications of Fubini's theorem 4* A Fourier inversion formula 5 Exercises 6 Problems Chapter 3. Differentiation and Integration 1 Differentiation of the integral 1.1 The Hardy-Littlewood maximal function 1.2 The Lebesgue differentiation theorem 2 Good kernels and approximations to the identity 3 Differentiability of functions 3.1 Functions of bounded variation 3.2 Absolutely continuous functions 3.3 Differentiability of jump functions 4 Rectifiable curves and the isoperimetric inequality 4.1 Minkowski content of a curve 4.2* Isoperimetrie inequality 5 Exercises 6 Problems Chapter 4. Hilbert Spaces: An Introduction 1 The Hilbert space L2 2 Hilbert spaces 2.1 Orthogonality 2.2 Unitary mappings 2.3 Pre-Hilbert spaces 3 Fourier series and Fatou's theorem 3.1 Fatou's theorem 4 Closed subspaees and orthogonal projections 5 Linear transformations 5.1 Linear flmetionals and the Riesz representation the-orem 5.2 Adjoints 5.3 Examples 6 Compact operators 7 Exercises 8 Problems Chapter 5. Hilbert Spaces: Several Examples 1 The Fourier transform on L2 2 The Hardy space of the upper half-plane 3 Constant coefficient partial differential equations 3.1 Weak solutions 3.2 The main theorem and key estimate 4* The Dirichlet principle 4.1 Harmonic functions 4.2 The boundary value problem and Diriehlet's principle 5 Exercises 6 Problems Chapter 6.Abstract Measure and Integration Theory 1 Abstract measure spaces 1.1 Exterior measures and Carathdodory’s theorem 1.2 Metric exterior measures 1.3 The extension theorem 2 Integration on a measure space 3 Examples 3.1 Product measures and a general Fubini theorem 3.2 Integration formula for polar coordinates 3.3 Borel measures on R and the Lebesgue-Stieltjes in.tegral 4 Absolute continuity of measures 4.1 Signed measures 4.2 Absolute continuity 5* Ergodic theorems 5.1 Mean ergodic theorem 5.2 Maximal ergodic theorem 5.3 Pointwise ergodic theorem 5.4 Ergodic measure—preserving transformations 6* Appendix:the spectral theorem 6.1 Statement of the theorem 6.2 Positive operators 6.3 Proof of the theorem 6.4 Spectrum 7 Exercises 8 Problems Chapter 7.Hausdorff Measure and Fractals 1 Hansdorff measure 2 Hausdorff dimension 2.1 Examples 2.2 Self-similarity 3 Space-filling curves 3.1 Quartic intervals and dyadic squares 3.2 Dyadic cOrresDOndence 3.3 Construction of the Peano mapping 4* Besicovitch sets and regularity 4.1 The Radon transform 4.2 Regularity of sets when d≥3 4.3 Besicovitch sets have dimension 2 4.4 Construction of a Besicovitch set 5 Exercise 6 Problems Notes and References Bibliography Symbol Glossary Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。