原子光学是近年来兴起的基于量子力学的物理学前沿领域,涉及原子物理、分子物理和量子光学等物理学分支。原子光学基础的建立可追溯到1929年,其深入的实验研究则是近几年的事。本书重点关注光在原子光学中的应用以及对光与原子相互作用的理解。全书包括基本概念、线性原子光学、非线性原子光学与量子原子光学四部分共13章,分别为:光作用于原子的力,原子冷却,原子束的准直与聚焦,原子折射,原子陷阱与腔,碰撞,(碰撞的)简单应用,多体理论回顾,物质波相干,玻色-爱因斯坦凝聚,原子激光,非线性混波,光波与物质波的混波。对于从事原子激光、原子捕获、玻色-爱因斯坦凝聚等领域研究的或尝试进入这些领域的研究人员,本书是一本系统的入门参考书。
Preface
Ⅰ General Concepts
1 Light Forces on Atoms
1.1 Two-Level Atoms
1.2 Adiabatic Elimination
1.3 Dipole and Radiation Pressure Forces
1.4 Dissipation
2 Atomic Cooling
2.1 Ray and Wave Atom Optics
2.2 Doppler Cooling
2.3 Sisyphus Cooling
2.4 Subrecoil Cooling
2.5 Evaporative Cooling
Ⅱ Linear Atom Optics
3 Atomic Beam Collimation and Focusing
3.1 Collimation by Radiation Pressure Force
3.2 Focusing
3.3 Channeling by Standing Waves
3.4 Evanescent Field Mirrors
3.5 Focused Laser Beam Mirror
4 Atomic Diffraction
4.1 Raman-Nath and Bragg Diffraction
4.1.1 Raman-Nath Regime
4.1.2 Bragg Regime
4.2 Stern-Gerlach Regime
4.3 Spontaneous Emission
4.4 Mechanical Gratings
4.5 Atom Interferometers
5 Atomic Traps and Cavities
5.1 Magneto-Optical Traps
5.2 Magnetic Traps
5.2.1 Quadrupole Traps
5.2.2 Ioffe-Pritchard Traps
5.3 Optical Traps
5.4 Gravitational Cavities
5.5 Atomic Waveguides
Ⅲ Nonlinear Atom Optics
6 Collisions
6.1 Near-Resonant Dipole-Dipole Interaction
6.2 Propagation Effects
6.2.1 Free-Space-Like Regime
6.2.2 Large Interatomic Separations, x/c >> F-1
6.3 s-Wave Scattering and Pseudopotentials
6.3.1 s-Wave Scattering
6.3.2 Pseudopotentials
7 Simple Applications
7.1 Dipole-Dipole Interaction in an Atomic Cavity
7.1.1 Momentum Selection Rules
7.1.2 Energy Selection Rules
7.2 Atomic Diffraction by a SchrSdinger Field
Ⅳ Quantum Atom Optics
8 Review of Manybody Theory
8.1 SchrSdinger Field Quantization
8.2 The Hartree Approximation
8.3 Quasiparticles
9 Matter-Wave Coherence
9.1 Review of Optical Coherence Theory
9.2 Coherence of Matter Waves
9.3 Electronic Coherence
9.4 Density Coherence
9.4.1 Multimode Density Correlations
9.5 Field Coherence
9.5.1 Higher-Order Correlations
10 Bose-Einstein Condensation
10.1 Bose-Einstein Condensation in Free Space
10.2 Bose-Einstein Condensation in Traps
10.3 Experimental Realization in Alkali Vapors
10.4 Mean-Field Theory
10.5 Finite Temperatures
10.6 Coherence and Bose-Einstein Condensation
10.6.1 Hartree Description
10.6.2 Wave Packet Description
10.6.3 Spontaneous Symmetry Breaking Description
11 Atom Lasers
11.1 Experiments
11.2 Theory of a Binary-Collision Atom Laser
11.2.1 Atom Number and Atom Statistics
11.2.2 Linewidth
11.3 Matter-Wave Solitons
11.3.1 Soliton Solutions of the Nonlinear Schr6dinger Equa tion
11.3.2 Gap Solitons in Multicomponent Condensates
11.3.3 Gap Soliton Control
12 Nonlinear Wave Mixing
12.1 Stability of a Two-Component Condensate
12.2 Three-Component Spinor Condensate
12.2.1 Hartree Ground State
12.2.2 Spin Domains
12.2.3 Exact ground state
12.3 Atomic four-wave mixing
12.4 Quantum Theory of Atomic Four-Wave Mixing
12.4.1 Angular Momentum Representation
12.4.2 Dynamics
12.4.3 Quantum Correlations
13 Mixing of Optical and Matter Waves
13.1 Parametric Amplification of Atomic and Optical Fields
13.2 Four-Wave Mixing
13.2.1 Instability and Gain
13.2.2 Entanglement between Atomic and Optical Fields
13.3 Matter-Wave Superradiance
13.4 Phase-Coherent Matter-Wave Amplification
References
Index