网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 高等数学(上)/21世纪大学数学丛书
分类 科学技术-自然科学-数学
作者 田立新
出版社 江苏大学出版社
下载
简介
编辑推荐

全书分为上、下两册。本书为上册,内容包括一元函数微积分学、无穷级数等。各章节配有习题,同时由本章小结给出各章主要内容和基本要求,各章的自我检测题、复习题便于学生检测和提高,各章的复习题中有些具有一定难度,教师可根据学生的实际情况选用。为了更好地与中学知识衔接和使用本书,书末附有二阶和三阶行列式简介、常用曲线和曲面、积分表和习题参考答案。在本书编写工作中力求做到讲解数学内容的同时,加强对学生应用能力的培养,结合基本概念、基本定理和基本方法的介绍,考虑到实际应用的背景,注重学生应用数学知识解决实际问题的意识和能力。

内容推荐

本书是根据教育部提出的“高等教育面向21世纪教学内容和课程教学改革计划”的精神,参照近年全国高校工科数学教学指导委员会工作会议的意见。结合多年高等数学课程改革实践编写而成的。全书强化数学思想方法的阐述。以培养学生运用所学知识解决实际问题的能力为出发点,注重理论性与应用性相结合。

本书分为上、下两册。上册包括函数与极限、导数与微分、微分学基本定理、微分学应用、不定积分、定积分、定积分的应用、无穷级数等8章。每章附有小结,配有习题、自我检测题及复习题。书末附有二阶和三阶行列式简介、常用曲线和曲面、积分表、习题参考答案。

本书可作为高等院校各专业高等数学课程的教材,也可作为各专业的教学参考书。

目录

1 函数与极限

 1.1 函数

1.1.1 集合与映射

1.1.2 变量与函数的概念

1.1.3 函数的性质

1.1.4 反函数

1.1.5 函数的复合与复合函数

1.1.6 函数的四则运算

1.1.7 初等函数

1.1.8 双曲函数与反双曲函数

习题1-1

 1.2 极限

1.2.1 数列的极限及其性质

1.2.2 函数的极限及其性质

1.2.3 极限运算法则

1.2.4 极限存在准则两个重要极限

1.2.5 无穷小与无穷大

习题1-2

 1.3 函数的连续性和间断点

1.3.1 函数的连续性

1.3.2 函数的间断点及其分类

1.3.3 连续函数的运算

1.3.4 初等函数的连续性

1.3.5 闭区间上连续函数的性质

1.3.6 一致连续性的概念

 习题1-3

 本章小结

 自我检测题1

 复习题1

2 导数与微分

 2.1 导数的概念

2.1.1 引例

2.1.2 导数的定义

2.1.3 导数的几何意义

2.1.4 函数的可导性与连续性的关系

习题2-1

 2.2 函数的求导方法初等函数的导数

2.2.1 几个基本初等函数的导数公式

2.2.2 函数的和、差、积、商的求导法则

2.2.3 反函数求导法则

2.2.4 复合函数求导法则

2.2.5 隐函数求导法

2.2.6 取对数求导法

2.2.7 由参数方程所确定的函数的求导法

2.2.8 由极坐标方程所表示的函数的导数

2.2.9 相关变化率

习题2-2

 2.3 高阶导数

2.3.1 高阶导数的概念

2.3.2 高阶导数的四则运算及莱布尼兹公式

习题2-3

 2.4 微分

2.4.1 微分的概念与存在的条件

2.4.2 微分的几何意义

2.4.3 微分法则

2.4.4 微分的应用举例

习题2-4

 本章小结

 自我检测题2

 复习题2

3 微分学基本定理

 3.1 微分学三个基本定理

3.1.1 费马(Fermat)引理

3.1.2 罗尔定理

3.1.3 拉格朗日中值定理

3.1.4 柯西定理

习题3-1

3.2 泰勒公式

习题3-2

 本章小结

 自我检测题3

复习题3

4 微分学应用

 4.1 未定式求极限

4.1.1 0/0型未定式

4.1.2 ∞/∞型未定式

4.1.3 其他未定式

习题4-1

 4.2 函数的单调性和极值

4.2.1 函数的单调性

4.2.2 函数的极值

4.2.3 最大值和最小值问题

习题4-2

 4.3 曲线的凹凸性和拐点

习题4-3

 4.4 函数图形的描绘

4.4.1 曲线的渐近线

4.4.2 函数图形的描绘

习题4-4

 4.5 曲率

4.5.1 弧微分

4.5.2 曲率的计算公式

4.5.3 曲率圆

习题4-5

4.6 方程的近似解

4.6.1 二分法

4.6.2 切线法

习题4-6

 本章小结

 自我检测题4

 复习题4

5 不定积分

 5.1 不定积分

5.1.1 原函数

5.1.2 不定积分的概念

5.1.3 基本积分表

5.1.4 基本积分运算法则

习题5-1

 5.2 换元积分法

5.2.1 第一换元法(凑微分法)

5.2.2 第二换元法

习题5-2

 5.3 分部积分法

习题5-3

 5.4 有理函数的不定积分

5.4.1 有理函数的不定积分

5.4.2 三角函数有理式的积分

5.4.3 简单无理函数的积分

习题5-4

 5.5 积分表的使用

本章小结

自我检测题5

复习题5

6 定积分

 6.1 定积分的概念

6.1.1 引例

6.1.2 定积分的概念

习题6-1

 6.2 定积分的性质

习题6-2

 6.3 微积分基本定理

6.3.1 积分上限的函数及其导数

6.3.2 牛顿-莱布尼兹公式

习题6-3

 6.4 定积分的换元法与分部积分法

6.4.1 定积分的换元法

6.4.2 定积分的分部积分法

习题6-4

 6.5 反常积分

6.5.1 无穷限的反常积分

6.5.2 无界函数的反常积分

习题6-5

 6.6 反常积分的审敛法r函数

6.6.1 无穷限反常积分的审敛法

6.6.2 无界函数的反常积分的审敛法

6.6.3 г(Gamma)函数

习题6-6

本章小结

自我检测题6

复习题6

7 定积分的应用

 7.1 定积分的元素法

 7.2 定积分在几何方面的应用

7.2.1 平面图形的面积

7.2.2 体积

7.2.3 平面曲线的弧长

习题7-2

 7.3 定积分在物理及其他方面的应用

7.3.1 变力沿直线所做的功

7.3.2 液体的压力

7.3.3 引力

7.3.4 平均值和均方根

习题7-3

 本章小结

 自我检测题7

 复习题7

8 无穷级数

 8.1 常数项级数的概念与性质

8.1.1 常数项级数的概念几何级数调和级数

8.1.2 常数项级数的性质

8.1.3 级数收敛的柯西(Cauchy)充要条件

习题8-1

 8.2 正项级数

8.2.1 正项级数的基本性质

8.2.2 E项级数的比较审敛法

8.2.3 E项级数的比值审敛法

8.2.4 正项级数的根值审敛法

习题8-2

 8.3 任意项级数

8.3.1 交错级数与莱布尼兹审敛法

8.3.2 任意项级数及绝对值审敛法

8.3.3 绝对收敛级数的性质

习题8-3

 8.4 幕级数

8.4.1 函数项级数

8.4.2 幂级数与幂级数的收敛区间

8.4.3 幂级数的代数性质与解析性质

习题8-4

 8.5 函数展开为幂级数及幂级数的若干应用

8.5.1 泰勒级数

8.5.2 函数展开成幂级数的方法

8.5.3 幂级数的若干应用

8.5.4 欧拉公式

习题8-5

 8.6 函数项级数的一致收敛性

8.6.1 一致收敛的概念

8.6.2 函数项级数一致收敛的审敛法

8.6.3 一致收敛级数的解析性质

8.6.4 幂级数的一致收敛性

习题8-6

 8.7 傅里叶级数

8.7.1 三角函数系的正交性及三角级数

8.7.2 傅里叶级数的收敛性定理

8.7.3 周期函数展开成傅里叶级数

8.7.4 奇延拓和偶延拓

8.7.5 傅里叶级数的复数形式

习题8-7

 本章小结

 自我检测题8

复习题8

附录1 二阶和三阶行列式简介

附录2 常用曲线和曲面

附录3 积分表

习题参考答案

参考文献

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/4/8 19:44:03