网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 计算机模拟方法在物理学中的应用(第3版影印版理科类系列教材)
分类 科学技术-自然科学-物理
作者 (美)古德
出版社 高等教育出版社
下载
简介
编辑推荐

本书是在美国大学使用很广泛的一本经典的,讲解如何使用计算机进行物理学数字模拟的教材,该书为刚刚出版的第三版。该书不是简单的物理学研究中的数学方法的介绍,而更注重在使用计算机模拟物理学问题中帮助学生更深刻的理解物理学,帮助学生在学习中了解和掌握使用计算机做物理学研究的一些基本手段,并学会如何根据具体的物理问题选择相应的研究方法。此外,还通过对具体的例子的讲解也为学习物理学的学生介绍了物理学广阔的应用天地。

本书可作为高等学校物理类专业或其它理工类专业计算物理课程的教材或参考书,对于相关学科的研究人员也是一本有用的参考书。

内容推荐

本书是在美国大学使用很广泛的一本经典的,讲解如何使用计算机进行物理学数字模拟的教材,该书为刚刚出版的第三版。本书中的程序全部使用Java语言来编写,具有非常好的平台兼容性,实用性强。由于该书是通过计算机模拟讲解物理,因此对计算机编程的基础要求不高,读者都能在课程学习的过程中学习和掌握编程的工具及方法。

目录

  ~ Introduction

  1.1  Importance of Computers in Physics

  1.2  The Importance of Computer Simulation

  1.3  Programming Languages

  1.4  Object-Oriented Techniques

  1.5  How to Use this Book

     Appendix 1A: Laboratory Reports

2 ~ Tools for Doing Simulations

 2. l  Introduction

 2.2  Simulating Free Fall

 2.3  Getting Started with Object-Oriented Programming

 2.4  Inheritance

 2.5  The Open Source Physics Library

 2.6  Animation and Simulation

 2.7  Model-View-Controller

     Appendix 2A: Complex Numbers

3 ~ Simulating Particle Motion

 3.1  Modified Euler Algorithms

 3.2  Interfaces

 3.3  Drawing

 3.4  Specifying the State of a System Using Arrays

 3.5  The ODE Interface

 3.6  The ODESolver Interface

 3.7  Effects of Drag Resistance

 3.8  Two-Dimensional Trajectories

 3.9  Decay Processes

*3.10 Visualizing Three-Dimensional Motion

 3.11 Levels of Simulation

     Appendix 3A: Numerical Integration of Newton's Equation of Motion

4 ~ Oscillatory Systems

 4.1  Simple Harmonic Motion

 4.2  The Motion of a Pendulum

 4.3  Damped Harmonic Oscillator

 4.4  Response to External Forces

 4.5  Electrical Circuit Oscillations

 4.6  Accuracy and Stability

 4.7  Projects

5 ~ Few-Body Problems: The Motion of the Planets

 5. l  Planetary Motion

 5.2  The Equations of Motion

 5.3  Circular and Elliptical Orbits

 5.4  Astronomical Units

 5.5  Log-Log and Semilog Plots

 5.6  Simulation of the Orbit

 5.7  Impulsive Forces

 5.8  Velocity Space

 5.9  AMini-Solar System

 5.10 Two-Body Scattering

 5.11 Three-Body Problems

 5.12 Projects

6 ~ The Chaotic Motion of Dynamical Systems

 6.1  Introduction

 6.2  ASimple One-Dimensional Map

 6.3  Period Doubling

 6.4  Universal Properties and Self-Similarity

 6.5  Measuring Chaos

*6.6  Controlling Chaos

 6.7  Higher-Dimensional Models

 6.8  Forced Damped Pendulum

*6.9  Hamiltonian Chaos

 6.10 Perspective

 6.11 Projects

     Appendix 6A: Stability of the Fixed Points of the Logistic Map

     Appendix 6B: Finding the Roots of a Function

7 ~ Random Processes

 7.1  Order to Disorder

 7.2  Random Walks

 7.3  Modified Random Walks

 7.4  The Poisson Distribution and Nuclear Decay

 7.5  Problems in Probability

 7.6  Method of Least Squares

 7.7  Applications to Polymers

 7.8  Diffusion-Controlled Chemical Reactions

 7.9  Random Number Sequences

 7.10 Variational Methods

 7.11 Projects

     Appendix 7A: Random Walks and the Diffusion Equation

8 ~ The Dynamics of Many-Particle Systems

 8.1  Introduction

 8.2  The Interrnolecular Potential

 8.3  Units

 8.4  The Numerical Algorithm

 8.5  Periodic Boundary Conditions

  8.6  A Molecular Dynamics Program

  8.7  Thermodynamic Quantities

  8.8  Radial Distribution Function

  8.9  Hard Disks

  8.10 Dynamical Properties

  8.11 Extensions

  8.12 Projects

     Appendix 8A: Reading and Saving Configurations

9 ~ Normal Modes and Waves

  9.1  Coupled Oscillators and Normal Modes

  9.2  Numerical Solutions

  9.3  Fourier Series

  9.4  Two-Dimensional Fourier Series

  9.5  Fourier Integrals

  9.6  Power Spectrum

  9.7  Wave Motion

  9.8  Interference

  9.9  Fraunhofer Diffraction

  9.10 Fresnel Diffraction

     Appendix 9A: Complex Fourier Series

     Appendix 9B: Fast Fourier Transform

     Appendix 9C: Plotting Scalar Fields

10 ~ Electrodynamics

   10.1 Static Charges

   10.2 Electric Fields

   10.3 Electric Field Lines

   10.4 Electric Potential

   10.5 Numerical Solutions of Boundary Value Problems

   10.6 Random Walk Solution of Laplace's Equation

  "10.7 Fields Due to Moving Charges

  "10.8 Maxwell's Equations

   10.9 Projects 407

      Appendix 10A: Plotting Vector Fields

11 ~ Numerical and Monte Carlo Methods

   11.1 Numerical Integration Methods in One Dimension

   11.2 Simple Monte Carlo Evaluation of Integrals

  11.3 Multidimensional Integrals

  11.4 Monte Carlo Error Analysis

  11.5 Nonuniform Probability Distributions

   11.6 Importance Sampling

  11.7 Metropolis Algorithm

  * 11.8 Neutron Transport

      Appendix 11A: Error Estimates for Numerical Integration

      Appendix 11B: The Standard Deviation of the Mean

      Appendix 11C: The Acceptance-Rejection Method

      Appendix llD: Polynomials and Interpolation

12 ~ Percolation

  12.1 Introduction

  12.2 The Percolation Threshold

  12.3 Finding Clusters

  12.4 Critical Exponents and Finite Size Scaling

  12.5 The Renormalization Group

  12.6 Projects

13 ~ Fractals and Kinetic Growth Models

  13.1 The Fractal Dimension

  13.2 Regular Fractals

  13.3 Kinetic Growth Processes

  13.4 Fractals and Chaos

  13.5 Many Dimensions

  13.6 Projects

14 ~ Complex Systems

   14.1 Cellular Automata

   14.2 Self-Organized Critical Phenomena

   14.3 The Hopfield Model and Neural Networks

   14.4 Growing Networks

   14.5 Genetic Algorithms

   14.6 Lattice Gas Models of Fluid Flow

   14.7 Overview and Projects

15 ~ Monte Carlo Simulations of Thermal Systems

   15.1 Introduction

   15.2 The Microcanonical Ensemble

   15.3 The Demon Algorithm

   15.4 The Demon as a Thermometer

   15.5 The Ising Model

   15.6 The Metropolis Algorithm

   15.7 Simulation of the Ising Model

   15.8 The Ising Phase Transition

   15.9 Other Applications of the Ising Model

   15.10 Simulation of Classical Fluids

   15.11 Optimized Monte Carlo Data Analysis

  * 15.12 Other Ensembles

   15.13 More Applications

   15.14 Projects

      Appendix 15A: Relation of the Mean Demon Energy to the Temperature

      Appendix 15B: Fluctuations in the Canonical Ensemble

      Appendix 15C: Exact Enumeration of the 2 x 2 Ising Model

16 ~ Quantum Systems

  16.1 Introduction

  16.2 Review of Quantum Theory

  16.3 Bound State Solutions

  16.4 Time Development of Eigenstate Superpositions

  16.5 The Time-Dependent Schrrdinger Equation

  16.6 Fourier Transformations and Momentum Space

  16.7 Variational Methods

  16.8 Random Walk Solutions of the Schrrdinger Equation

  16.9 Diffusion Quantum Monte Carlo

  16.10 Path Integral Quantum Monte Carlo

  16.11 Projects

      Appendix 16A: Visualizing Complex Functions

17 ~ Visualization and Rigid Body Dynamics

  17.1 Two-Dimensional Transformations

  17.2 Three-Dimensional Transformations

  17.3 The Three-Dimensional Open Source Physics Library

  17.4 Dynamics of a Rigid Body

   17.5 Quaternion Arithmetic

   17.6 Quaternion Equations of Motion

   17.7 Rigid Body Model

   17.8 Motion of a Spinning Top

   17.9 Projects

      Appendix 17A: Matrix Transformations

      Appendix 17B: Conversions

18 ~ Seeing in Special and General Relativity

   t8.1 Special Relativity

   18.2 General Relativity

   18.3 Dynamics in Polar Coordinates

   18.4 Black Holes and Schwarzschild Coordinates

   18.5 Particle and Light Trajectories

   18.6 Seeing

   18.7 General Relativistic Dynamics

  * 18.8 The Kerr Metric

   18.9 Projects

19 ~ Epilogue: The Unity of Physics

   19.1 The Unity of Physics

   19.2 Spiral Galaxies

   19.3 Numbers, Pretty Pictures, and Insight

   19.4 Constrained Dynamics

   19.5 What are Computers Doing to Physics?

  Index

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/1/19 7:14:36