"本书全面且深入浅出地介绍了机器学习技术,不仅涵盖机器学习算法原理及其实现和运行,还包括Python编程基础和深度学习入门知识,有助于初学者快速掌握算法的实际应用。本书每一节都提供了相应的Python代码实例,通过文字、公式、图像、代码和运行结果的结合,读者可以深入理解算法的实现过程。
全书分为3部分: 第一部分(第1~3章)提供推荐的预备知识,包括机器学习概述、Python和NumPy基础;第二部分(第4~11章)详细介绍各种机器学习算法,涉及回归、分类、聚类等任务;第三部分(第12、13章)介绍深度学习的背景知识,并介绍近年来备受关注的对抗生成网络。
本书适合作为高等院校计算机、信息工程专业高年级本科生、研究生的教材,同时也可供从事相关领域学术研究、工程实践专业人员以及对机器学习和深度学习感兴趣的初学者参考。
"