《机器学习实战:基于Scikit-Learn、Keras和TensorFlow:原书第3版》:
本书分为两大部分:第一部分主要基于Scikit-Learn,介绍机器学习的基础算法;第二部分则使用TensorFlow和Keras,介绍神经网络与深度学习。此外,附录部分的内容也非常丰富,包括课后练习题解答、机器学习项目清单、SVM对偶问题、自动微分和特殊数据结构等。书中内容广博,覆盖了机器学习的各个领域,不仅介绍了传统的机器学习模型,包括支持向量机、决策树、随机森林和集成方法,还提供了使用Scikit-Learn进行机器学习的端到端训练示例。作者尤其对深度神经网络进行了深入的探讨,包括各种神经网络架构、强化学习,以及如何使用TensorFlow/Keras库来构建和训练神经网络。本书兼顾理论与实战,既适合在校学生,又适合有经验的工程师。
《机器学习实战:模型构建与应用》:
本书主要包括两部分。第1部分(第1章-第11章)讲解了如何使用TensorFlow来创建不同应用场景的机器学习模型。该部分介绍TensorFlow、计算机视觉、自然语言处理和序列建模。第二部分(第12章-第20章)将引导你了解如何将模型置于 Android 和 iOS 上的用户手中、使用 JavaScript 的浏览器以及通过云提供服务的场景。