![]()
内容推荐 深度学习是新一代人工智能所使用的主要技术。本书深入浅出地讲解了深度学习的相关技术,包括深度学习编程基础、目标分类、目标检测、图像分割、生成对抗网络等。对每种技术,本书均从原理和程序实现两个方面进行讲解。在原理方面,讲解算法和技术的相关背景、主要算法思想和原理;在程序实现方面,从数据准备、神经网络模型实现、损失函数实现、整体训练流程和效果展示五部分对算法的实现进行具体介绍,帮助读者深入了解算法的细节,积累相关实践经验。本书是《深度学习与人工智能》的配套用书,适合深度学习领域的初学者,以及高校高年级本科生和研究生阅读学习。本书各章节的源代码和实验数据集可通过本书的GitHub主页下载,以供读者自主练习。本书分析研究了深度学习相关的网络模型,以及不同网络模型的算法结构、原理与核心思想及实战案例。主要内容涉及人工神经网络、模糊神经网络、概率神经网络、小波神经网络、卷积神经网络及其扩展模型、深度生成对抗网络及其扩展模型、深度受限玻尔兹曼机及其扩展模型、深度信念网络及其扩展模型、深度自编码器及其扩展模型等深度学习网络结构、原理与方法。通过深度学习网络在信道盲均衡、目标识别、图像分类和运动模糊去除、特征提取与识别、缺陷早期诊断等领域中的应用案例,为读者提供应用深度学习网络解决具体问题的思路和方法。本书适合人工智能、计算机、自动化、电子与通信、大数据科学等相关学科专业的科学研究人员和工程技术人员阅读,也可作为相关专业博士、硕士研究生的参考书。 目录 9787111743224 深度学习与人工智能实战9787111707684 深度学习与信号处理: 原理与实践 |